Investigation on high risk pollutant control techniques of reclaimed water is one of the globally urgent and significant issues. Currently, catalytic ozonation and nanofiltration have become the most effective methods for high risk pollutant control during water treatment and wastewater reclamation, but these techniques still remain their individual drawbacks in practice. The development of functional membranes with self-cleaning ability has provided us one of the most promising strategies for water purification. To settle the issue on advanced purification of reclaimed water with high efficiency, this project will design and testify the applicability of carbon-based nanofiber membranes coupled with catalytic ozonation. By optimizing the performance of separation and catalytic ability of membranes, we propose our enhanced multifunctional membrane will realize membrane separation concurrent catalytic ozonation with high efficiency for reclaimed water advanced purification. According to our previous study, the main objectives of this investigation are to: (1) design functional carbon-based nanofiber membrane structure, and establish route of the membranes with high performance as well as its optimization, (2) investigate electron mobility mechanism of membrane, behaviors of ozone adsorption and decomposition, as well as approaches of enhanced membrane catalytic efficiency, and (3) demonstrate synergistic principles and mechanisms on membrane separation concurrent catalytic ozonation. By demonstrating the advantages of functional carbon-based naonofiber membrane for reclaimed water advanced purification, the strategy of this study represents a versatile approach to develop water pollutant control method, and provides new perspectives of membrane separation for wastewater reclamation.
再生水中高风险性污染物的高效控制技术是现阶段迫切需要开展的研究课题。催化臭氧氧化和纳滤技术已成为当前控制水中高风险性有机污染物的有效手段,但却各自存在弊端。研发具有自洁净特性的功能分离膜消毒净化工艺,为解决其各自关键技术问题提供了新的思路。针对再生水高效消毒净化问题,本项目通过构建炭基催化臭氧氧化纳米纤维分离膜,调控优化其膜分离和催化性能,显著提高催化分离膜的综合性能,实现催化臭氧氧化与膜分离的高效协同消毒净化作用。结合前期研究基础,本项目重点研究(1)炭基催化臭氧氧化纳米纤维分离膜的功能设计、合成路径及性能调控方法;(2)催化降解体系电子迁移机制、臭氧吸附分解行为及催化性能强化方法;(3)催化臭氧氧化与膜分离协同消毒净化匹配原则和相互作用机制。本项目构建的炭基催化臭氧氧化纳米纤维分离膜消毒净化体系,将为水污染控制方法提供新思路,并为完善膜法水质净化新方法提供技术支持。
再生水中高风险性污染物的高效控制技术是现阶段迫切需要开展的研究课题,传统催化臭氧氧化和膜过滤技术已成为当前控制水中高风险性有机污染物的有效手段,但却各自存在弊端。本项目基于静电纺丝技术设计完成了炭基催化臭氧氧化纳米纤维分离膜的功能化构建,初步建立了功能纳米纤维分离膜的制备平台和合成方法,制备了系列炭基催化臭氧氧化纳米纤维分离膜,调控优化其膜分离和催化性能,探索了炭基催化臭氧氧化纳米纤维分离膜的催化性能强化方法,显著提高催化分离膜的综合性能,实现催化臭氧氧化与膜分离的高效协同消毒净化作用,推测了催化臭氧氧化和膜分离协同净化机理。在合理设计高通量不对称活性炭纳米纤维膜的基础上,当跨膜压(TMP)仅为0.05MPa时,制备的活性炭纳米纤维膜显著优于商品化超滤膜性能,纯水通量可达1887.8L/(m2h),对浓度为200mg/L的PEG20000的截留率高达49.6%。进一步改性活性炭纳米纤维,经优化后的活性炭负载Ag/TiO2纳米纤维膜纯水通量进一步高达3081.54 L/(m2h),活性炭负载SiO2纳米纤维膜的纯水通量高达3161.24 L/(m2h)。在对实际再生水深度净化过程中,活性炭负载Ag/TiO2纳米纤维膜和负载SiO2纳米纤维膜对水中TOC的去除率分别达到了96.2%和91.2%,表现出良好的去除效率,协同工艺条件下,对环境中广泛存在的双酚A、壬基酚及对特辛基苯酚的去除率均达到了90%左右或以上,对于难降解的多环芳烃的去除率均达到70%以上,表现出明显的毒害削减效果。研究中,经强化后的功能纳米纤维分离膜均表现出一定的自洁净作用,膜通量衰减得到了明显减缓。本项目构建的炭基催化臭氧氧化纳米纤维分离膜消毒净化体系,将为水污染控制方法提供新的思路,也为完善膜法水质净化新方法提供技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
膜表面CNT巴基纸层修饰联合臭氧氧化控制再生水超滤过程膜污染的机制研究
用于再生水处理的原位催化臭氧分离膜工艺界面协同除污染特性与作用机制
膜/疏水Mn基氧化物催化臭氧氧化耦合系统及其净水特性的研究
基于碳层纳米通道构建膜界面臭氧催化氧化体系的研究