Helican wave is a magnetized electromagnetic wave, which the frequency is between ωci < ω < ωce. Owing to the relative low working pressure (0.01-10Pa), a high plasma density (ca. 1011–1014 cm−3) , and a high plasma production efficiency as well as a small confined magnetic field (below 1000 Gs), helicon wave sustained discharge has received increased attention. To launch the helical plasma, four kinds of antannas are empolyed, including Nagoya III, Boswell, Shoji and single coil, where the last one can excite m=0 wave, others are for m=±1 wave. The lots of works have achieved in m=±1 wave by Nagoya III, Boswell, Shoji antennas, while few works are reported in the single coil antenna. However, as known the ion source based on a single coil antenna generating helical plasma has demonstrated some advantages over other ionic soure, such as a single distribution of ionic energy, the respective controllable ionic current and the flux, which will be benefit to the film deposition and modification. But until now there is no a clear mechanism in the helical plasma generation, absorption, couple and transition by the single coil antenna plasma. The explanation of energy damped throughout the body of the plasm in this helical plasma is also complex, especially the appearance and the role of the low magnetic field peak. Whether or not existence of low magnetic field in single coil antenna plasma is argued. Therefore, in this work we intend the research in helicon plasma characterizations generated by single coil antenna. The achievements of this work will be bebefit to the understanding of ionic source and its applications.
螺旋波是一种在磁化等离子体中传播、频率介于离子和电子回旋频率之间的电磁波(ωci < ω < ωce)。螺旋波等离子体放电气压低(0.01-10Pa)、密度高(1011~1014cm−3)、电离度高(1~2%)和约束磁场低(一般小于1000 Gs),这些特点使其在低温等离子体技术中备受关注。螺旋波放电可以由Nagoya、Boswell、Shoji和单匝等四种天线由射频电源驱动激励实现。前三种天线激发m=±1螺旋波,研究较多,对m=0单匝天线研究相对较少。 而采用这种天线放电的模式产生低能离子源,在薄膜沉积、材料处理改性具有很多独特的优点,包括能量单一、束流和能量可以单独控制等。然而对单匝螺旋波放电的产生、波和等离子体耦合方式、波的传播等,还没有一个明确的理论。特别是在产生高密度的低场峰,解释较为混乱,是否存在低场峰其实还不肯定。本项目的研究对新型离子源的应用有重要指导作用。
螺旋波是一种在磁化等离子体中传播、频率介于离子和电子回旋频率之间的电磁波(ωci< ω < ωce)。螺旋波等离子体放电气压低(0.01~10Pa)、密度高(1011~1014cm−3)、电离度高(1~2%)和约束磁场低(一般小于1000 Gs),这些特点使其在低温等离子体技术应用中备受关注。螺旋波放电可以由Nagoya、Boswell、Shoji和单匝等四种天线由射频电源驱动激励实现。前三种天线激发m=±1螺旋波,研究较多,对m=0单匝天线研究相对较少。而采用单匝Loop天线放电的模式产生低能离子源,在薄膜沉积、材料处理改性具有很多独特的优点,包括能量单一、束流和能量可以单独控制等。然而对单匝螺旋波放电的产生、波的传播、波和等离子体耦合方式等,还没有一个明确的理论。特别是在产生高密度的低场峰,解释较为混乱,是否存在低场峰其实还不确定。本项目的研究对新型离子源的理论和应用有重要指导作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
三级硅基填料的构筑及其对牙科复合树脂性能的影响
金属橡胶螺旋网状结构线匝空间多点随机接触特性研究
CFETR螺旋波电流驱动数值模拟及螺旋波天线和等离子体耦合机制研究
螺旋波和螺旋波湍流态的动力学及其控制的研究
OAM波的传播特性及OAM天线的研究