China igh-speed train cycling maximum mileage has exceeded 3.5 million kilometers. In the long wide area environments, especially in arctic-alpine environment,the working conditions of brake discs are extremely bad. The low temperature brittleness of brake discs materials and low impact wear resistance in arctic-alpine environment lead to seriously damaged surface materials. Therefore, to improve the performances of the brake disc, and guarantee effectiveness in the braking process, are imminent. In this project, aim at over 300km/h high-speed train brake disc, combine investigation and analysis of actual use conditions, the surface dynamic failure mechanism of high speed brake disc will be investigated and revealed. And then, reverse design method of surface material and process for high speed brake disc with long life and high reliable are proposed. Simultaneously, the high speed brake disc surface composite materials will be fabricated. Through a comprehensive means of small-scale test and 1:4 Bench test, the service behavior of the new model surface composite materials under arctic-alpin environmeng and high energy braking conditions will be researched. In additions, injury and dynamic failure mechanism of its surface and interface will be revealed. The brake life evaluation and its comprehensive extension mechanism will be studied. Finally, developing a new high-speed brake disc surface composite materials, breaking the blockade of foreign technology, improving braking performance and vehicle safety and reliability, promoting the upgrading and innovation of China standard high-speed train key materials and components.
中国高速列车单车最高运营里程已超过350万公里。在长期广域环境条件下,尤其是高寒环境,制动盘工况极其恶劣,高寒环境下制动盘材料的低温脆性、抗冲击磨损性能低等问题导致制动盘表层材料损伤严重。因此,提高制动盘性能,保障高寒高速制动有效性,延长制动盘寿命已迫在眉睫。本项目针对300km/h以上高寒高速列车制动盘,结合线路实际运行情况的调研分析,提出高寒高速制动盘长寿命、高可靠表层材料和工艺的逆向设计方法,制备出长寿命高寒高速制动盘表层复合材料,并表征表面与基体界面两侧的微观组织连续性和结合强度及力学、热物理性能匹配性;通过小试样和1:4台架试验等综合手段,研究新型表面复合材料在高寒高能制动条件下的服役行为,揭示其表面和界面的损伤及动态失效机理,建立表面复合制动盘的寿命评估模型;开发出一种新型高寒高速制动盘表面复合材料及复合工艺,提高制动性能及制动寿命和行车安全可靠性。
中国高速列车单车最高运营里程已超过350 万公里。在长期广域环境条件下,尤其是高寒环境,制动盘工况极其恶劣,高寒环境下制动盘材料的低温脆性、抗冲击磨损性能低等问题导致制动盘表层材料损伤严重。因此,提高制动盘性能,保障高寒高速制动有效性,延长制动盘寿命已迫在眉睫。本项目针对300km/h 以上高寒高速列车制动盘,结合线路实际运行情况的调研分析,揭示异常磨耗与热疲劳开裂为冬季雪天制动盘失效主要原因。提出高寒高速制动盘长寿命、高可靠表层材料和工艺的逆向设计方法,制备出CoNiTi钴基激光沉积涂层的长寿命高寒高速制动盘表层复合材料,并表征表面与基体界面两侧的微观组织连续性和结合强度及力学、热物理性能匹配性;通过小试样和缩比台架试验等综合手段,研究新型表面复合材料在高能制动条件下的服役行为,揭示其表面和界面的损伤及动态失效机理,建立表面复合制动盘的寿命评估模型;开发出一种新型高寒高速制动盘表面复合材料及复合工艺,提高制动性能及制动寿命和行车安全可靠性。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
内点最大化与冗余点控制的小型无人机遥感图像配准
岩石学报
碳陶复合材料用于高速列车制动盘和闸片及其摩擦行为研究
复杂流场环境下高速列车制动盘组动态特性及其对运行列车影响研究
高速列车制动盘热弹耦合动力学特性研究
低温环境下高速列车制动摩擦性能与失效机制研究