The wireless body area network (WBAN) is an enabling technology for Internet of Things, especially for healthcare applications. It deploys around human body to capture vital signs and provides feedback for achieving better life quality. The WBAN-chip is the most critical component in a body area network that facilitates communications between the body and monitoring centre. The demand for information from different types of sensor calls for a WBAN with multiple nodes distributed over whole body, at the same time the sensor size has to be as compact as possible for better user acceptance. The existing WBAN-chip can hardly meet the new requirements, i.e. better wireless communication performance at low power. In recent years, body channel communications (BCC) that utilizes human body as medium to deliver information and energy has drawn significant research interests. BCC exhibits prominent advantages compared to conventional air-medium-based approaches both in transmission loss and stability. As a result, utilizing human body as medium will significantly improve the performance of the WBAN-chip. This project will investigate several areas related to BCC, ranging from fundamental theory, low power circuit design techniques and the core technologies in wireless energy delivery. A human medium based transmission model towards practical body-area environment will be established. The real-time compensation technique for transmission path loss in human medium will be investigated. High-efficiency high-reliability human-medium based information and energy transfer circuits will be developed. Finally, a fully body-medium linked WBAN-chip will be implemented, whose energy efficiency of both communication and power transfer will be improved by at least one order than the existing technologies.
无线体域网是物联网的关键技术之一,围绕人体部署并与人类生活、健康息息相关。无线体域网芯片是该技术的核心载体,可用于医疗诊断、健康监测以及神经接口等领域。随着体域网规模的扩大与节点尺寸的缩小、现有的无线体域网芯片面临通信能耗大与供电不足的矛盾,严重制约了其发展与应用。近年来,利用人体作为体域网传输媒介的研究取得了一系列进展,证实其相比空气媒介,在传输损耗及稳定性方面具有显著优势,利用人体媒介进行信息与能量传输有望大幅提升无线体域网芯片的性能。本项目拟以基于人体媒介的体域网芯片为研究对象,从基础理论、核心技术、关键电路以及系统芯片四个层次展开:拟建立面向实际体域环境的人体媒介传输路径模型,研究人体媒介路径损耗实时补偿技术,重点突破高能效、高可靠性的人体媒介无线通信与供能电路,最终实现一款基于人体媒介信息与能量传输的体域网芯片。相比现有技术在信息与能量的传输效率上,预期提升至少一个数量级。
人体信道通信技术有望实现穿戴式健康设备的低功耗组网互连,需研制具有高能量效率,且适应体表环境的专用集成收发器芯片。本项目依次研究了人体信道通信模型,实现了人体信道与集成电路互相兼容的仿真环境;研究了人体信道损耗自适应补偿技术,降低收发器芯片受环境、姿态等因素影响下的超额损耗;研究了人体信道数据能量传输电路,提出了高能效无线数据与能量收发方案,实现了高能效人体信道通信芯片。基于研究成果分别设计单模式、多模式人体信道通信收发器芯片两款,传输距离覆盖人体全身,单模式芯片达到4Mbps、15pJ/bit指标,多模式芯片达到10Mbps,119pJ/bit指标,峰值能量效率与蓝牙等传统体域网技术相比,降低1个数量级以上。该项目成果对于推动人体信道通信技术全面应用于消费电子、智慧医疗领域的可穿戴设备,提供了重要的理论、实验依据。在消费电子领域,人体信道通信收发器芯片可用于手机等终端设备到VR、AR头显、立体声耳机的通信。在智慧医疗领域,该技术可用于分布式、多模态体征数据监测、助听器、人工视网膜、义肢等假体的传感数据的回传与控制。还需进一步提升该技术在复杂环境中的可靠性、稳定性。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于LASSO-SVMR模型城市生活需水量的预测
基于SSVEP 直接脑控机器人方向和速度研究
拥堵路网交通流均衡分配模型
动态环境下无线体域网的能量和信息高效传输关键技术研究
基于人体信道预测和体征信息识别的无线体域网传输技术研究
无线体域网医疗感知信息传输与处理方法的研究
无线供能体域网能量优化理论与方法