Partial differential equation is one of the core fields in fundamental research. The parabolic Monge-Ampere equation has important applications in stochastic theory and differential geometry. Many key issues are equivalent to finding some solutions to parabolic Monge-Ampere equations. This project focuses on the existence of entire ancient solutions to parabolic Monge-Ampere equation, which is closely related to the property of the Gauss-Kronecker curvature around Type II singularity. We will also explore the optimal estimates of solutions to parabolic Monge-Ampere equation. Besides, we will study the optimal Lp estimates of solutions to linearized parabolic Monge-Ampere equation.
偏微分方程是基础研究的核心领域之一。抛物型Monge-Ampere方程在随机理论,微分几何等领域有着重要的应用。许多关键问题都等价于求解相应的抛物型Monge-Ampere方程。本项目将研究抛物型Monge-Ampere方程的古代解的整体存在性,它与Gauss-Kronecker曲率流的第II型奇点密切相关。本项目还将讨论抛物型Monge-Ampere方程的解的最优先验估计。此外,我们将研究线性化抛物型Monge-Ampere方程的解的Lp估计.
抛物型Monge-Ampere方程在随机理论,微分几何等领域有着重要的应用。本项目研究了抛物型Monge-Ampere方程以及线性化抛物型Monge-Ampere方程解的局部估计。我们得到了具有VMO型数据的抛物型Monge-Ampere方程解的局部估计,以及线性化抛物型Monge-Ampere方程解的Lp估计。此外,我们还得到了完备Riemannian流形上的一类椭圆方程正解的梯度估计。
{{i.achievement_title}}
数据更新时间:2023-05-31
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选
复杂系统科学研究进展
基于MCPF算法的列车组合定位应用研究
带有滑动摩擦摆支座的500 kV变压器地震响应
抛物型Monge-Ampere方程解的存在性
非局部拟抛物方程解的全局存在性与爆破性
抛物型Monge-Ampere方程的外问题与多值解
非线性梁局部解和整体解的存在性研究