Protonic field effect transistors (FETs) is a new kind of bio-electronic device based on the modulation of proton transport in proton conductors, which has important significance in simulating and monitoring physiological activities. However, up to now, the proton conductors used in protonic FET devices were all in form of amorphous films, which can not be used to optimize the performance of protonic FETs through structure-activity relationship. Yet, Porous coordination polymer (PCP) proton conductors possess many advantages, such as rich structure, adjustable dimension, modified pores, and etc.. These unique structural advantages make PCP proton conductors extremely suitable for the research and optimization of protonic FET devices. However, research in this field is blank so far. Thus, this project focus on the systematic investigation of proton conductivity of two-dimensional structural PCPs through the structural design as well as high-quality preparation of thin film, and then grasp structural characteristics of materials for optimizing the proton transfer performance in order to obtain PCP materials with high proton conductivity. At the same time, by making use of the advantage of two-dimensional structure of proton transport to build protonic FET device, the valid relationship between the performance of the devices and two-dimensional PCP films of different micro/nano structures could be summarized and revealed. Finally, the best path of the optimized performance of protonic FET devices can be put forward. These research will provide a general theoretical guidance for the structure-activity relationship between PCP crystal structure and proton conductivity, and also lay a solid foundation in terms of materials and devices for high performance protonic FETs.
质子场效应晶体管(FETs)是一类基于调控质子导体中质子输运的新型生物电子器件,在模拟/监测生理活动方面具有重要研究意义。然而目前用于质子FET器件的质子导体都是非晶态薄膜,无法通过构效关系去优化质子FET性能。多孔配位聚合物(PCPs)质子导体具有结构丰富、维度可调、孔道可修饰等优点,其结构上的优势非常适合研究和优化质子FET器件。然而,目前这方面的研究处于空白。本项目拟通过系统的结构设计结合高质量的薄膜制备,详细研究二维结构PCP的质子传导性能,掌握优化材料质子传输性能的结构特征,获得高导电率的二维PCP材料。同时利用其二维质子输运的优势构筑质子FET器件,总结和揭示二维PCP薄膜的不同微纳结构和质子FET的器件性能之间的有效关系,提出优化质子FET器件综合性能的最佳路径。上述研究将为PCP晶态结构与质子传导性能的构效关系提供一般性理论指导,为高性能质子FET奠定坚实的材料与器件基础。
基于质子导电材料的质子FETs可调控质子导体中质子传输行为,在仿生电子等应用方面具有重要研究意义。通过多孔晶态结构调控以优化质子FET器件性能的研究非常重要,但目前极具挑战。在本课题的资助下,设计制备了系列高稳定性、高质子电导率的多孔材料,电导率分别室温高达10-3 S cm-1和80°C,98%RH时2.2×10-2 S cm-1。并开发了“纳米片自组装”、“界面限定生长”、“范德华外延”等PCP薄膜制备新方法,实现了大晶畴、强取向、表面平整、厚度纳米级别可控的高质量PCP薄膜制备上的突破。研制出首例PCP质子场效应晶体管,首次开发了基于多孔有机聚合物膜的柔性质子FET器件。建立了PCPs结构与质子FET器件的质子半导体理论模型,推进了质子半导体理论的进一步发展,同时为材料的质子输运研究提供极佳的研究手段。拓展了PCP材料的应用领域,使PCP材料在仿生电子领域应用研究迈出了重要一步。在国际学术刊物上共发表总计16篇SCI论文,其中包括4篇Angew. Chem. Int. Ed.;1篇Adv. Mater.;1篇Nat. Commun.;1篇Adv. Energy Mater.;1篇CCS Chem.;1篇Energy Stor. Mater.等。申请授权国家发明专利4项,培养研究生14名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
物联网中区块链技术的应用与挑战
高压工况对天然气滤芯性能影响的实验研究
中温区质子传导多孔配位聚合物及其晶态薄膜的研究
基于酰肼分子的多孔配位聚合物材料的设计合成与性能研究
多孔配位聚合物催化材料的制备、表征和性能研究
配位聚合物多孔材料的气体吸附分离纯化研究