Mineral material tourmaline possesses special properties, including the spontaneous polarization and the far infrared radiation, which could reduce the surface tension of water, and improve the solubility of substance, therefore tourmaline has potential applications in biomedicine area. But there have been few research reports about the preparation, microstructure and properties of tourmaline mineral materials with nanometer grain size, which limits the application of tourmaline nanoparticles as functional additives in composite materials. This project aims to use chemical hydrothermal methods and physical grinding methods to prepare tourmaline nanoparticles respectively, and characterize the microstructure of tourmaline nanoparticles, to research the mechanism about the influence of different preparation techniques on the microstructure and summary the control method. Moreover, this project would investigate the spontaneous polarization, far infrared radiation and surface potential properties of tourmaline nanoparticles with different microstructures, and study the structure-activity relationship of tourmaline nanoparticles obtained by different processing methods. The artificial vascular graft with tourmaline nanoparticles as function additives will be prepared via electrospinning technology. It will be studied on the migration behavior of tourmaline nanoparticles in polyurethane (PU) solution during electrospinning, and regulated the distribution of tourmaline nanoparticles in electrospun PU fibers. This project will research the control effect of electrospun PU artificial vascular graft with tourmaline nanoparticles on vascular calcification, and their inner wall calcification mechanism, which could provide the theoretical and experimental basis for the application of tourmaline nanoparticles in biomedical fields.
电气石矿物材料具有自发极化、辐射远红外线等特殊性能,能够降低水的表面张力、提高物质的溶解度,在生物医学等方面具有潜在应用价值。目前针对纳米电气石颗粒的制备、内部微结构和性能等方面的研究较少,限制了电气石作为功能性添加剂在复合材料中的应用。本项目拟用化学水热、机械冲击等方法分别制备纳米电气石颗粒,并表征其内部微结构,研究不同的制备技术对其微观结构的影响机理并掌握调控方法;测试不同微结构的纳米颗粒的自发极化、远红外辐射、表面电位等性能,研究不同加工方法获得的纳米电气石颗粒的构效关系;运用静电纺丝(电纺)技术将纳米电气石颗粒作为功能性添加剂制备电纺纤维人工血管,研究电纺过程中纳米电气石颗粒在聚合物(聚氨酯)溶液中的迁移行为,并调控其在电纺纤维中的排列分布情况;研究含纳米电气石颗粒的电纺纤维人工血管控制血管钙化的效应,及其内壁钙化机制,为纳米电气石颗粒在生物医用领域的应用奠定理论和实验基础。
电气石矿物材料具有自发极化、辐射远红外线等特殊性能,能够降低水的表面张力、提高物质的溶解度,在生物医学等方面具有潜在应用价值。目前针对纳米电气石颗粒的制备、内部微结构和性能等方面的研究较少,限制了电气石作为功能性添加剂在复合材料中的应用。本项目进行了纳米电气石颗粒/聚氨酯人工血管的制备及其内壁钙化影响机制的研究,发明了制备纳米电气石颗粒以及运用静电纺丝(电纺)方法将其均匀分布于生物相容性聚氨酯纤维基体的新技术,揭示了随纳米电气石颗粒粒径减小其远红外辐射和自发极化性能增强的规律,阐明了纳米电气石颗粒促进钙离子流动、促使饱和浓度钙离子形成易冲刷的球簇状结晶以减缓钙化沉积的机理,进而达到预防病理型钙化沉积、避免人工血管二次栓塞的目的;同时通过生物相容性试验,发现了纳米电气石颗粒改善聚氨酯纤维膜抗凝血性能、促进内皮细胞增殖、减少植入后体内炎症反应的新现象,为纳米电气石颗粒在生物医用领域的应用奠定理论和实验基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
粗颗粒土的静止土压力系数非线性分析与计算方法
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
基于Pickering 乳液的分子印迹技术
上转换纳米材料在光动力疗法中的研究进展
组合丙氨酸扫描突变和定量饱和突变结合大规模相互作用筛选鉴定流感聚合酶PA-PB2亚基相互作用关键位点
以同轴静电纺丝技术制备壳-芯结构药物纳米纤维复合人工血管的研究
功能性纳米复合纤维的静电纺丝制备及调控机理
静电纺丝制备纳米复合材料及其环境应用研究
静电纺丝法制备的生物活性氧化钛微纳米纤维的性能调控及其机制