With the increasing demand of the vehicle performance, the adjustable hydraulic shock absorber (AHSA) has attracted public attentions and has been widely employed in the semi-active suspension system due to its superiorities of simple and reliable structure, stable performance, low energy consumption and cost efficiency. However, the absence of the explicit model and regulating mechanism, and the inaccurate output of the damping force become the bottleneck of AHSA in terms of research and practical applications. Taking a valve controller AHSA as the object, this project investigates the imbalance status of the fluid dynamics caused by structural dynamics, and then studies the influence of the multiphase morphology of the gas-liquid on pressure response and transient effect of the pipe. Subsequently, based on the heat dissipation mechanism, investigations on temperature compensation system of the damping force with advanced artificial intelligent methods have also been conducted. The detailed contents of this project include: Definition of the damping characteristics of the AHSA valve and the establishment of its regulating mechanism; Dynamic mechanism of the bubble and cavitation in terms of generations, coexisting and extinction and their impacts on the fluctuation and delay of the damping force; Analysis of the heat transfer modes of the AHSA under thermodynamics and the construction of the temperature compensation system for the damping force. This project aims to reveal the modeling methods of structure-fluid coupling system and its regulating mechanism, as well as the analysis of gas-fluid-heat status under multi-interior cavity, and finally achieving the theoretical construction of the damping characteristics and the engineering application of the compensation system of the valve controlled AHSA.
随着对车辆性能要求的不断提升,广泛用于半主动悬架的阻尼可调液压减振器由于结构简单可靠、性能稳定、能耗低且性价比高成为关注热点。然而,当前该类减振器的精准模型及调节机理缺失、阻尼力输出失准成为制约其研究及应用的瓶颈。本课题中以阀控式阻尼可调液压减振器为对象,探究结构动力学引起的流体动力学不平衡状态,进而分析其引起的气液多相形态对压力响应及管路瞬态效应的影响,并在热耗散基础上实现基于先进人工智能算法的阻尼力温度补偿方法的研究。具体内容包括:阻尼可调液压减振器阀口阻尼特性的定义及其调节机理的建立;气泡与气穴在产生、共存及消亡的动态更迭机理及其对阻尼力波动及延迟的影响;热力学效应下减振器热耗散模式的分析及阻尼力温度补偿体系的建立。项目以揭示结构-流体耦合系统建模方法与调节机理、多室内腔的气-液-热状态分析为目标,最终实现阀控式阻尼可调减振器阻尼特性理论的建立及其补偿系统的工程实践。
随着对车辆性能要求的不断提升,广泛用于半主动悬架的液压可调阻尼器由于结构简单可靠、性能稳定、能耗低且性价比高成为关注热点。然而,当前该类可调阻尼器的精准模型及调节机理缺失、阻尼力输出失准成为制约其研究及应用的瓶颈。本课题中以阀控式液压可调阻尼器为对象,开展了以下研究:1)研究了可变节流口周围油液动力学状态,明确节流口阻尼力产生机理;研究液压可调阻尼器调节阀口阻尼特性,综合参数化物理模型和非参数化方法,建立了阀控式液压可调阻尼器模型。在此基础上,明确了阀口有效开度与阻尼力之间的对应关系,定义了阻尼力的调节机理;2)研究了阻尼器内部热耗散机理及其对阻尼特性的影响,明确了外部振动在阻尼器内部转化为热能后的吸收与传递形式;基于建立的可调阻尼器模型进行了热能传递模式的定义,并对阻尼器内部热效应进行了分析,建立了阻尼器内部温度变化引起的油液粘度的参数化分析方法。通过结合已建立的阻尼器模型,为阻尼力温度补偿动态控制提供了更为完善的机理模型;3)研究基于人工智能方法的液压可调阻尼器阻尼力补偿方法,基于实验数据,构建了阻尼力输入与输出参数之间的网络映射关系。在此基础上,建立阻尼力动态温度补偿系统,实现热力学因素对阻尼力影响的预测,实现阻尼力温度动态补偿控制。通过上述研究,完善了结构-流体耦合系统建模方法与调节机理,实现了液压可调阻尼器内部热效应分析及基于人工智能方法的阻尼力温度补偿策略的设计,并通过自主设计的试验装置及悬架测试试验台进行了验证。结果表明,所提出的液压可调阻尼器模型及调节机理有效,且基于热力学因素与人工智能方法构建的动态温度补偿系统可以有效进行阻尼力补偿,提升阻尼器控制系统效能。项目以阀控式液压可调阻尼器为对象,揭示了液压阀系与复杂流体结构耦合的动力学机理,所建立的动态温度补偿系统为具有阻尼特性系统的预测及修正提供了理论指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
玉米叶向值的全基因组关联分析
基于分形L系统的水稻根系建模方法研究
路基土水分传感器室内标定方法与影响因素分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
磁流体可调阻尼减振器原理和应用研究
磁流变液挤压流动机理及磁流变挤压阀式减振器特性研究
舰船调节阀附加耦合负载补偿与高频动态流量自感知机理研究
高速开关阀桥式数字比例阀空穴游隙产生机理及补偿方法研究