The marine control value plays a key role in the fluid transportation of the marine power system. With the development of the ship technology, the power system demands to increase the performances of the valve. The practice shows that the control value withstands additional coupling mutation load in the conditional of the leap-style changes, which is especially obvious when the warship carries out complex tactical-technical action. The additional coupling mutation load that may greatly exceed the rated load will affect the drive torque and reduce the control accuracy of the valve. And it will endanger the ship. In order to compensate the additional load, we need to get the high-frequency dynamic flow through the control valve. However, nowadays there is no way to measure the dynamic flow through the marine control valve yet. The project will study the self-sensing mechanism of dynamic flow through the marine control valve. And a new high-frequency dynamic flow measurement method without flowmeters will be proposed. Based on the self-sensing flow, the dynamic compensation model of the additional coupling mutation load of the control valve will be established. The effect of the coupling load on the control valve will be revealed. And the compensation of the additional coupling mutation load will be carried out according to the full analytic compensation relation between the load and the response characteristics of the control valve. The project will solve the valve problem caused by the additional coupling mutation load, which helps to extend the valve life and improve the control accuracy of the valve. All in all, the project will establish the theoretical basis for Chinese independent manufacture of the marine control valve.
舰船调节阀在保证舰船动力系统正常的流体输送中起着关键作用。现代舰船对调节阀性能要求越来越高。舰船环境复杂多变,伴随跳跃式变化工况,特别是舰艇实施复杂的战术动作时,调节阀承受着流体振荡导致的附加耦合负载。附加负载可能大大超过额定载荷,导致阀门不动作,降低了控制精度,危及舰船安全。为按需补偿附加负载,需获得调节阀内腔高频变化的瞬态流量。目前尚没有能测量调节阀内腔高频动态流量的方法,这使附加负载的补偿成为一个难题。本项目将研究调节阀的动态流量自感机理,提出一种无流量计的高频动态流量自感知方法;基于流量自感,建立调节阀突变附加耦合负载补偿的动力学模型,揭示耦合负载对调节阀的影响规律,发展一种确保调节阀响应特性的耦合负载全补偿控制策略,按需补偿调节阀执行机构输出,抵消流体振荡对调节阀性能的影响,延长调节阀寿命,提高其控制精度,为开发具有自主知识产权的舰船关键调节阀奠定理论基础。
舰船调节阀的工作环境复杂多变,在对所控流体进行动态调整的过程中,调节阀承受着突变的附加耦合负载,易导致调节阀执行机构不能正常动作,危及舰船的安全。本项目研究了舰船调节阀内部流体流场的分布规律和变化特点,探讨了调节阀在工作条件下流量特性的畸变规律,提出了一种无流量计的高频动态流量自感知方法;基于流量自感,建立了调节阀附加耦合负载的数学模型,揭示了调节阀响应特性与附加负载之间的解析关系,提出了调节阀附加耦合负载的补偿方法。研究结果表明:流量特性的畸变降低了调节阀的控制精度,导致调节阀在某一开度范围内的调节作用变弱。为了消除或降低调节阀流量特性畸变所带来的不良影响,可对调节阀的阀芯进行补偿设计,或在调节阀控制器中对调节阀的流量特性进行非线性补偿。调节阀的阻塞流会影响动态流量的测量精度,当调节阀两端的压降大于阻塞流所对应的压降时,就不应采用调节阀两端的压降来计算通过调节阀的动态流量,而应采用阻塞流所对应的临界压降来计算流经调节阀的动态流量。附加耦合负载在稳态条件下并不显著,但在动态条件下,特别是在调节阀处于快速、频繁地启动、关闭、调整的动态过程中,附加耦合负载的影响会表现得比较明显。通过对调节阀的附加耦合负载进行补偿,可消除或最大程度抵消突变负载所造成的不良影响,提高调节阀抗突变负载冲击的能力。本项目的研究,有助于降低舰船调节阀的故障率,提高其控制精度,延长其寿命,为开发具有自主知识产权的舰船高性能调节阀奠定理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
环形绕组无刷直流电机负载换向的解析模型
考虑流固耦合影响的页岩力学性质和渗流规律
量子点与光子晶体微腔的耦合
动态海面舰船目标与箔条云复合散射理论建模与耦合机理分析
高频雷达海面舰船目标的分类与识别
高温高压大流量核电/火电控制阀的耦合振动与泄漏自感知机理研究
广义Hammerstein模型辨识及其工业应用:调节阀粘滞问题的诊断与补偿