In recent years, online equity crowdfunding envisions rapid development worldwide. Start-ups can release project information at online equity crowdfunding platforms to raise funds to support project development. Investors can invest these projects to get project equity, and eventually achieve financial returns through the start-up company’s IPO, repurchase, equity transfer or mergers and acquisitions. Compared to the traditional offline financing channels, online equity crowdfunding is open to investors through online platforms, which can greatly reduce the participation threshold of investors, thus is an effective way of corporate financing and investor investment. However, equity crowdfunding is also facing many challenges. Information asymmetry and undeveloped regulatory measures have brought various risks to equity investors, projects and platforms. Therefore, this project will depend on the collective behavior, social contagion theory and social capital theory and the application of machine learning and econometrics methods, to explore the key research question about how different factors related to equity crowdfunding projects, investors, platform and external environment will affect the individual investors investment decisions, equity crowdfunding success, as well as the subsequent development of the projects (such as the capability of continuous financing). This project will also attempt to identify the changing roles of various influencing factors in different stages of the project equity crowdfunding, so as to predict the possibilities of future returns to investors. Through in-depth and systematic research on various issues related to online equity crowdfunding, start-up project success and platform development, this research project will extend and expand previous research in terms of literature and theory, and put forward practical guidance and suggestions for participants of online equity crowdfunding.
近年来,网络股权众筹在全球范围内发展迅速,初创企业在股权众筹平台上发布信息融资,用于企业项目发展,投资者通过对项目进行现金投资,获得项目的股权,最终通过公司公开发行上市、公司回购、股权转让或兼并收购等方式获得回报。然而,股权众筹也面临诸多的挑战,信息不对称与尚未发展完善的监管措施,给股权众筹投资者、项目与平台带来了各种风险。因此,本项目将基于群体经济、社会蔓延理论、社会资本理论等理论基础,应用机器学习与计量经济学等方法,重点研究股权众筹项目、投资者、平台及外部环境相关的因素,会怎样影响投资者个体的投资决策,进而影响股权众筹项目融资成功,以及影响股权众筹项目后续发展的成功,并识别出各类影响因素在项目发展不同阶段的作用差别,从而达到预测项目未来能否使投资者获得回报的目的。通过深入系统的研究,本项目将在文献与理论上延伸与拓展以往研究,并对网络股权众筹的各参与方提出切实的实践指导与建议。
近年来,网络股权众筹在全球范围内发展迅速,初创企业在股权众筹平台上发布信息融资,用于企业项目发展,投资者通过对项目进行现金投资,获得项目的股权,最终通过公司公开发行上市、公司回购、股权转让或兼并收购等方式获得回报。然而,股权众筹也面临诸多的挑战,信息不对称与尚未发展完善的监管措施,给股权众筹投资者、项目与平台带来了各种风险。因此,本项目将基于群体经济、社会蔓延理论、社会资本理论等理论基础,应用机器学习与计量经济学等方法,重点研究股权.众筹项目、投资者、平台及外部环境相关的因素,会怎样影响投资者个体的投资决策,进而影响股权众筹项目融资成功,以及影响股权众筹项目后续发展的成功,并识别出各类影响因素在项目发展不同阶段的作用差别,从而达到预测项目未来能否使投资者获得回报的目的。通过深入系统的研究,本项目对不同类型的股权众筹平台用户投资行为、项目再融资概率及平台政策机制的影响方面,形成了一系列研究成果,在文献与理论上延伸与拓展以往研究,并对网络股权众筹的各参与方提出切实的实践指导与建议。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
基于SSVEP 直接脑控机器人方向和速度研究
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
城市轨道交通车站火灾情况下客流疏散能力评价
基于FTA-BN模型的页岩气井口装置失效概率分析
众筹项目发起人与资助人价值共创行为对项目绩效的影响研究
基于机器学习算法的相图构建与预测方法研究
基于机器学习的长期护理保险精算预测模型与风险分析
机器学习与优化天元数学交流项目