Twin-fluid nozzle is the key component of atmospheric environmental protection equipment, and its atomization performance directly affects the removal characteristics of fine particle. Due to the characteristics of complex coupling atomization and heat and mass transfer between gas-liquid fluid and structure, there are some problems of traditional twin-fluid nozzle such as low droplet concentration and large working noise. Meanwhile, the droplet size of traditional twin-fluid nozzle is difficult to achieve the requirement of efficient removal of fine particles. It has become one of the key issues that restrict the fine particles removal efficiency and reliability of atmospheric environmental protection equipment..In order to solve the above problems, according to the effect of supersonic and self-excited oscillation behavior on the atomization performance, a supersonic internal mixing novel twin-fluid nozzle based on the self-excited oscillation effect is conceived. It aims to explore the following research content in depth: (1) the self-excited oscillation dynamics characteristics of the novel twin-fluid nozzle are explored, and the mechanism and influence of the twin-fluid dynamic behavior under self-excited oscillation effect are revealed, (2) a gas-liquid-solid-acoustic-thermal multi-field coupled self-oscillation atomization model of the novel twin-fluid nozzle is established, and the self-excited oscillation atomization mechanism, atomization characteristic and parameter influence law under the multi-field coupled are revealed, and (3) a key performance multi-objective adaptive collaborative optimization method for the novel twin-fluid nozzle is explored, the collaborative optimization of key performance is achieved and the optimal design parameters are determined..The research work may enrich the theory of optimization design of the twin-fluid nozzle, and provide a theoretical reference for the improvement of atomization performance.
双流体喷嘴是大气环保装备的核心部件,其雾化性能直接影响细颗粒物脱除特性。传统双流体喷嘴因气液流体与结构间复杂的耦合雾化及传热传质特性,存在雾滴浓度低、工作噪声大等问题,同时其所产生的雾滴粒径难以达到细颗粒物高效脱除的要求,成为制约大气环保装备细颗粒物脱除效率及可靠性的关键问题之一。本项目根据超音速及自激振荡行为对雾化性能的调控原理,构思出一种基于自激振荡效应的超音速内混式新型双流体喷嘴,拟深入探索以下研究内容:①探究新型双流体喷嘴的自激振荡动力学特性,揭示自激振荡效应下的双流体动力学行为作用机理及影响规律;②建立新型双流体喷嘴的气-液-固-声-热多场耦合模型,揭示多场耦合下自激振荡雾化机理、雾化特性及参数影响作用规律;③探寻新型双流体喷嘴关键性能多目标自适应协同优化方法,实现对关键性能的协同优化,确定最优设计参数。本项目研究可丰富双流体喷嘴的优化设计理论,同时为提高其雾化性能提供理论参考。
双流体雾化喷嘴是大气环保装备中将连续液体破碎成离散雾滴的核心部件,因其工作介质可以为水、化学浆液、生物药剂等而被广泛应用于燃煤烟气净化、矿井综采降尘、堆场转运抑尘等方面,其雾化性能直接影响装备整体的颗粒物脱除效率及可靠性。双流体喷嘴由于气体、液体与机械结构间复杂的耦合雾化特性及气体压缩膨胀所引起的强烈传热传质特性,存在如雾滴粒径大、雾滴浓度低、工作噪声大等问题,是国内外亟待解决的关键问题之一。因此,探究双流体喷嘴多场耦合雾化机理及性能自适应协同优化,是实现优异雾化性能以及大气环保装备实现细颗粒物高效脱除的关键所在,具有重要的科学研究价值与工程应用前景。. 本项目针对上述研究目标,开展了相应的研究工作,所取得的研究结果如下:探究了新型双流体喷嘴的自激振荡动力学特性,揭示了自激振荡效应下的双流体动力学行为作用机理及影响规律;建立了新型双流体喷嘴的气-液-固-声-热多场耦合模型,揭示了多场耦合下自激振荡雾化机理、雾化特性及参数影响作用规律;探寻了新型双流体喷嘴关键性能多目标自适应协同优化方法,实现了对关键性能的协同优化,确定了最优设计参数。本项目研究结果可为多相流界面行为演化、多场耦合下多相流内部流动特性和自激振荡雾化机理方面的研究提供有益参考,具有重要的理论意义,为深地矿采、火力发电、轨道交通、钢铁冶炼、石油化工等领域所涉及的大气环保装备高效率、长寿命、低能耗、高可靠性优化设计提供新的技术途径和理论支持。同时,本项目的相关研究符合国家绿色可持续发展战略理念和经济社会绿色低碳发展战略需求。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于多模态信息特征融合的犯罪预测算法研究
钢筋混凝土带翼缘剪力墙破坏机理研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
双吸离心泵压力脉动特性数值模拟及试验研究
和环形空气场匹配的空气雾化喷嘴机理研究
耦合多源非稳态条件下液氮喷嘴内空化流动及雾化特性机理研究
高压雾化尘雾场双流体耦合的除尘机理与应用基础研究
利用自激振荡脉冲特性实现双腔室射流喷嘴的超微雾化机理