Carbonaceous aerosol, one of the most abundant components of atmospheric fine particulates, is now of worldwide concern in the field of climate and environment for its direct and indirect effects on climate change, environmental pollution, the global carbon cycle and the health risks. Proportioning the carbonaceous aerosol sources can accurately estimate the relative contribution of climatic effects of atmospheric aerosols and is the scientific basis for rational pollution reduction policy. Radiocarbon analysis is a powerful tool, which allows to quantitatively apportion between combustion and non-combustion products derived from fossil fuels (14C free or "dead") and those formed from modern biomass (contemporary levels of 14C; "alive"). The improvement of the source apportionment modeling including 14C measurement and biomarker tracers can provide the more credible information of aerosol sources and can reduce the uncertainty of the source apportionment. In this project, atmospheric particulates, including PM2.5 and other different diameter size particles, at three typical sites in the Pearl River Delta will be collected, and samples will be analyzed for carbonaceous matters, dissolved inorganic ion, inorganic elements, nuclear magnetic resonance, radiocarbon, and the sources of fine particulates will be apportioned using the receptor modeling including 14C measurement and biomarker tracers. The aims of the project is (1) to quantitatively apportion the sources of carbonaceous aerosols in the Pearl River Delta based on the 14C tracer and display the distribution character of fossil fuel carbon and contemporary carbon in the atmospheric particulate with different diameter sizes, (2) to illustrate the potential roles of fossil fuel carbon and contemporary carbon on the haze formation, (3) to quantitatively apportion the potential sources of the fine particle (PM2.5) in the Pearl River Delta based on the 14C and biomarker included receptor modeling and illustrate the potential controlling factors. Finally, the results of this project will be a scientific basis and theoretical support for the development of air pollution control countermeasures.
大气细颗粒物中的碳质组分,涉及到气候变化、环境影响、碳循环、健康危害等诸多问题,近年来成为了国内外关注的焦点。识别大气碳质气溶胶来源是准确估算大气气溶胶的气候效应、制定合理的污染减排措施的科学基础。放射性碳同位素(14C)是有效判别并定量分析化石碳和现代生物碳对碳质气溶胶相对贡献的最有效手段。结合14C和其他分子标志物示踪技术、源解析模型将提供更丰富的气溶胶来源信息,降低来源贡献率估算的不确定性。本研究拟以珠江三角洲大气细颗粒物为研究对象,利用放射性碳同位素示踪作用,探讨珠江三角洲现代碳和化石碳在灰霾生消过程中的作用;在建立的基于14C和分子标志物的颗粒物源解析方法的基础上,定量解析珠江三角洲碳质气溶胶和大气细颗粒物的来源、查明其时空变化规律和影响因素,为制定大气污染防治对策提供科学依据和理论支持。
大气细颗粒物中的碳质组分,涉及到气候变化、环境影响、碳循环、健康危害等诸多问题,近年来成为了国内外关注的焦点。识别大气碳质气溶胶来源是准确估算大气气溶胶的气候效应、制定合理的污染减排措施的科学基础。放射性碳同位素(14C)是有效判别并定量分析化石碳和现代生物碳对碳质气溶胶相对贡献的最有效手段。结合14C和其他分子标志物示踪技术、源解析模型将提供更丰富的气溶胶来源信息,降低来源贡献率估算的不确定性。本研究首先搭建了具有自主知识产权的、基于14C测定的气溶胶有机碳和元素碳分离系统和优化了其具体分离方法,使得我们实验室成为全球第三个拥有相关完整技术系统的气溶胶14C实验室。其次,利用14C的示踪技术,定量解析了我国典型地区碳质气溶胶的污染来源、阐明其变化规律和影响因素,指出生物质燃烧和居民散煤燃烧是我国大气细颗粒物中碳质组分的重要来源;查明了碳源在灰霾形成、演化和消退过程的动态变化趋势,指出了不同来源碳在不同季节灰霾形成过程中所起的作用,有助于深入认识灰霾的成因;利用已经建立的基于14C约束下的PMF受体模型,定量解析了珠三角大气细颗粒物的来源,为区域大气细颗粒物污染治理提供依据。在课题实施期间,申请国家发明专利4项,获得授权1项,申请并获得授权实用新型专利4项。相关成果共发表SCI论文11篇,其中9篇论文通讯作者为课题负责人本人。论文都发表在大气科学研究的主流期刊,包括1篇Environmental Science & Technology,2篇Atmospheric Chemistry and Physics,2篇Journal of Geophysical Research-Atmospheres,5篇Atmospheric Environment。到目前为止,论文被引用总次数达100多次,具有较好的学术影响力。部分成果在科学网报道2次,在广州日报报道1次。依托本项目,共培养博士后1名,博士研究生1名,硕士研究生1名。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
气载放射性碘采样测量方法研究进展
南海深部过程的海水14C示踪研究
基于超高分辨率质谱研究大气棕碳气溶胶光学示踪物的化学组成与来源
珠江三角洲大气降水低分子有机酸双碳同位素示踪
利用14C示踪估算森林土壤CO2排放通量