With the development of high-density integrated circuits, surface mounted supercapacitors (SMSs) are widely needed in high power energy conversion and portable electronic devices. Compared with traditional plug-type supercapacitors, SMSs must suffer reflow soldering process under 260 degrees centigrade, which has great challenges to the selection and matching of electrode active material, electrolyte, diaphragm and encapsulation materials. Domestic manufacturers have no ability to produce SMSs; even for foreign manufacturers, such products have problems of low energy density. Based on the applicant’s previous research on supercapacitors, for the first time, this project puts forward the preparation of SMSs based on printed circuit board (PCB) processing technology, and solves the science and technology problems during the preparation. Specifically, first of all, the complementary and cooperative effects of the composite will be investigated, which aims to break through the reunion and stacking of the nanocarbon and metal oxide materials. The rheological property of active material well be studied, which leads to high-performance electrodes that can be printing, device-level preparation and show large capacity. Secondly, the ionic liquid electrolyte and high temperature diaphragm are chosen, the encapsulation of the SMS is completed by PCB processing techniques including electroplating, cutting and hot pressing, and so on. Finally, the overall performances of the devices are evaluated by electrochemical tests and reliability tests, the energy storage mechanism of the devices will be investigated. In conclusion, research results of this project will help to provide a good solution for the industrialization of high-performance SMS devices.
随着高密度集成电路的发展,大功率能源转换、便携电子器件等设备对贴片超级电容器的需求日益增多。相对于传统插接式结构的超级电容器,贴片元件须承受260℃的回流焊工艺冲击,这对电极活性物质、电解液、隔膜及封装材料的优选和匹配均有极大的挑战。目前国内厂商尚不能生产此类产品,国外产品也存在能量密度偏低的问题。基于前期的研究基础,本项目首次提出利用印制电路板制程工艺制备贴片超级电容器的技术,并解决其中的科学与工艺难题。首先,通过纳米碳材料与金属氧化物的深度复合与协同互补,突破材料的团聚、堆叠等技术瓶颈,改善其流变性能,实现可印刷、器件级、大载量的高性能电极制备;其次,优选离子液体电解液和耐高温隔膜,基于电镀、切割、热压等印制电路板制程工艺,完成贴片元件的封装;最后,通过电化学和可靠性测试对器件的性能进行整体评价,探索其能量存储机制。该项目的研究成果可为高性能贴片超级电容器的产业化提供优异的解决方案。
随着高密度集成电路的发展,大功率能源转换、便携电子器件等设备对贴片超级电容器的需求日益增多。相对于传统插接式结构的超级电容器,贴片元件对电极活性物质、电解液、隔膜及封装材料的优选和匹配均有极大的挑战。基于前期的研究基础,本项目首次提出利用印制电路板制程工艺制备贴片超级电容器的技术,并解决其中的科学与工艺难题。首先,通过石墨烯材料与多价态氧化锰材料的深度复合与协同互补,突破材料的团聚、堆叠等技术瓶颈,改善其流变性能,实现可印刷、器件级、大载量的高性能电极制备,该复合电极材料因具有高效的自由电子及离子的传输网络、多种价态锰氧化物材料中丰富的电子及离子缺陷、多价态氧化锰和石墨烯的协同作用等效应,显示出高比容量(202 F/g)、高载量(19 mg/cm2,此时面电容约2.5 F/cm2)和优异的循环特性(115000圈,容量保有率106%);其次,优选离子液体电解液和耐高温隔膜,基于电镀、切割、热压等印制电路板制程工艺,完成两类贴片元件(平面和三明治结构)的封装,该器件具有高能量密度(47.6 Wh/kg)和高功率密度(20.8 kW/kg)特征,单一器件的容量分别达到15mF和20mF,工作电压窗口达2.7V;此外,更重要的是,该器件显示出优异的循环特性,80000圈循环后容量保有率为初始值的96%,是目前非水系贋电容超级电容器的最高值。该项目的研究成果可为高性能贴片超级电容器的产业化提供优异的解决方案。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
基于老化机理的超级电容器健康状态预测研究
基于薄液层氧化还原偶的新型超级电容器
基于碳纳米复合材料的可拉伸超级电容器
基于富介孔活性碳电极的超级电容器—超级电容器用双组分离子液体电解质的基础研究