The Neutrosophic set adds an independent indeterminacy-membership on the basis of intuitionistic fuzzy set, and it is a generalization of the existing fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set. So, it can be used to more accurately express the fuzzy information, and will have a wide application in the real decision-making problems. Now, it is an urgent need to give the valid theory and methods for these decision-making problems. This research project is with cutting-edge. Based on the fuzzy mathematics, operations research, computer simulation, prospect theory, evidence theory, artificial intelligence and so on, this project will do the following researches. (1) The basic theory of Neutrosophic set and its extension, such as operational rules, distance, entropy, size comparison, etc., and the generalized aggregation operators and their properties for Neutrosophic set; (2) The models and methods of multiple attribute decision making based on Neutrosophic set, including expansion of the traditional multiple attribute decision making methods for Neutrosophic set, multiple attribute decision making models and methods with incomplete information in Neutrosophic set (completely or partially unknown attribute weights, incomplete attribute values, etc.) , and multiple attribute decision making models and methods with the special relationship between attributes in Neutrosophic set (correlation relations, prioritized relations , etc.); (3) Multiple attribute decision making theory, models and methods of Neutrosophic set based on prospect theory; (4) the expansion of Neutrosophic set, and the development of the aviation service customer satisfaction evaluation system. The purpose of this study will establish the theory of Neutrosophic set, and models, methods and applications of multi-attribute decision making based on Neutrosophic set, and will develop and improve the theory and applications of Neutrosophic set and fuzzy decision-making.
中智集在直觉模糊集基础上增加了独立的不确定性度量,是对现有模糊集、区间模糊集、直觉模糊集等的一般化,具有更好地表达模糊信息的能力,并将在现实决策中产生广泛应用,急需给出有效的理论方法解决其决策问题,项目研究具有前沿性。本项目将基于模糊数学、运筹学、计算机仿真、前景理论、证据理论和人工智能等方法,研究:①中智集及其扩展的运算规则、距离、信息熵、大小比较等基本理论和基于中智集的一般化集成算子与性质;②基于中智集的多属性决策模型与方法,包括传统多属性决策方法在中智集的扩展、信息不完全(属性权重完全或部分未知、属性值有残缺等)的中智集决策模型与方法以及属性间具有特殊关系(关联关系、优先关系等)的决策模型与方法;③基于前景理论的中智集多属性决策理论、模型与方法;④中智值的扩展,并开发航空服务顾客满意度评价系统。本研究将建立中智集理论及多属性决策模型、方法与应用,发展和完善中智集及模糊决策理论与应用。
鉴于中智集对不确定信息度量的灵活性和在现实决策中的广泛应用,本项目基于模糊数学、运筹学、计算机仿真、前景理论、证据理论和人工智能等方法,主要围绕以下几方面做了研究:①中智集及其扩展的运算规则、距离、信息熵、大小比较等基本理论和基于中智集的一般化集成算子与性质;②基于中智集的多属性决策模型与方法,包括传统多属性决策方法在中智集的扩展、信息不完全(属性权重完全或部分未知、属性值有残缺等)的中智集决策模型与方法以及属性间具有特殊关系(关联关系、优先关系等)的决策模型与方法;③考虑决策者行为的中智集多属性决策理论、模型与方法,并将所提方法用于解决航空服务顾客满意度评价问题。本研究建立的中智集理论及多属性决策模型、方法与应用,发展和完善了中智集及模糊决策理论与应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于铁路客流分配的旅客列车开行方案调整方法
多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法
针对弱边缘信息的左心室图像分割算法
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
基于多色集合理论的医院异常工作流处理建模
基于中智集多属性决策的视频目标跟踪中多特征和多跟踪算子融合研究
基于粗集理论的多属性与多准则决策分析及其应用研究
基于图片模糊集的多准则决策方法及其应用研究
基于二型模糊集的多准则群决策理论、方法及其智能评价应用研究