In the aerospace area, electronic equipment such as the hemispherical resonator gyro, had complex curved surfaces which covered with functionalized metal pattern. Emerging localized and precision removal method based on the laser milling were promising to meet the manufacturing requirements with geometric technical index. However, electrical performance might be reduced or even failure due to the microstructure in the edge of the pattern and the composition change. Based on the non-correspondence between the geometric constraints and electrical properties of the component, electrical performance-oriented optimization method research of the laser ablation for the metal pattern covered on the complex components was investigated to break through the traditional processing concept with the only goal of design size guaranteed. Firstly, influence law of the laser parameters and scanning strategy to the geometric features of the metal pattern was explored to provide a foundation for its precision manufacturing. Secondly, an effective detection method which characterized the electrical specification of the metal pattern was presented based on the impedance analysis and distributed capacitance testing method. Then, mapping relation of the component’s electric performance and the pattern’s edge feature was studied to reveal the electrical failure mechanism for the metal pattern by laser machining. Meanwhile, based on the multi-objective optimization theory, processing parameter optimization algorithm for the laser ablation under the condition of multi-source constraints was discussed for the manufacturing of the component with high electrical performance. The method was verified by the preparation of the typical parts in the spacecraft. This project aims to provide a theoretical guidance and technical support for the promotion of high-end electronic equipment design and manufacturing level in our country.
航天航空领域中半球谐振陀螺仪等电子装备由复杂曲面零件表层覆盖功能化金属图案而成。新兴的激光定域精细去除技术虽有望满足其几何指标制造要求,但电性能却可能因图案边缘微观组织及成分改变而降低甚至失效。本项目针对零件几何约束与电气性能的非对应关系,拟突破以保证设计尺寸为唯一制造目标的传统加工理念,开展面向电性能的复杂构件表层金属图案激光制造工艺优化方法研究。首先,探索激光参量和扫描策略对金属图案几何特征的影响规律,为其精密制造奠定基础;其次,结合阻抗分析、分布电容测试等手段,提出一种有效表征金属图案电性能指标的检测方法;然后,通过分析零件电性能与图案边缘特征的映射关系,揭示激光加工金属图案电性能失效机制;最后,基于多目标优化理论,研究多源约束条件下激光制造工艺参数优化算法,实现零件的高电性能制造,并以某航天器典型零件的研制加以验证。项目旨在为提升我国高端电子装备设计制造水平提供理论指导与技术支撑。
本项目的研究目标为针对我国航天航空领域中复杂构件表面金属图案高性能制造需求,突破以保证设计尺寸为唯一制造目标的传统加工理念,开展面向电性能的复杂构件表层金属图案激光制造工艺优化方法研究。通过开展复杂构件表层图案激光精密制造、电性能合理表征、失效机制探索、面向电性能的工艺参数优化等研究内容,实现复杂构件表面功能化金属图案的高性能激光制造,并为电子装备设计指标的合理制定提供理论支撑,最终为提升重大工程领域高端装备中关键零部件的电气性能指标作出积极贡献。针对以上具体内容,本项目通过研究激光加工多层异质材料,以及覆层金属薄膜激光烧蚀阈值的获取方法,从而获得了超快激光加工纳米金属薄膜的基本参数。以表面镀覆金/铜和铬薄膜的石英为典型材料,采用超快激光作为加工手段,以直写去除的形式在不损伤石英基体的条件下,对表面金属薄膜进行精确去除,实现了以微细沟槽和微米金属导线等为代表的几何特征微细加工。通过对加工过程物理机制的分析、数值模拟仿真和实验研究,探索了材料去除机理、激光加工结果的数学表达、超快激光加工几何误差和材料失效的产生机理,提出了该工艺的合理加工参数窗口、突破了该方法工程化应用的关键问题,面向服役部件的电气性能,开发出典型的石英表面金属覆膜材料微细结构的超快激光直写加工工艺规范,实现了纳米金属薄膜相应典型零件的超快激光精密加工。研究了不同加工参数对金属材料去除深度、宽度等加工特征参数的影响规律,揭示激光加工构件表面金属图案的损伤机制,并通过对加工后功能图案的阻抗、容抗测试,为后续面向电性能的激光制造工艺优化奠定理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
低轨卫星通信信道分配策略
基于多模态信息特征融合的犯罪预测算法研究
N-2-羟丙基二甲基乙基氯化铵壳聚糖/N,O-羧甲基壳聚糖纳米粒新城疫疫苗的制备及免疫作用机制研究
超薄激光晶片的超精密加工工艺及几何精度和表面质量协调控制方法
单晶SiC激光表面改性复合磨削加工去除机理及加工工艺研究
极薄壁微构件的微加工损伤机理及对使役性能的影响
基于复杂加工对象精度需求的高性能复杂制造装备主动精度设计方法