Kato平方根算子及分数阶微分算子的相关问题

基本信息
批准号:11471033
项目类别:面上项目
资助金额:65.00
负责人:陈艳萍
学科分类:
依托单位:北京科技大学
批准年份:2014
结题年份:2018
起止时间:2015-01-01 - 2018-12-31
项目状态: 已结题
项目参与者:丁勇,瞿萌,朱凯,王虹,牛振东,薛超
关键词:
Calderón交换子Kato平方根分数阶微分算子椭圆算子
结项摘要

Harmonic analysis is a very important branch of modern mathematics, the developing process of harmonic analysis is closely connected with the study of partial differential equation. This project is mainly devoted to study some interaction topics between harmonic analysis and PDE. Specially, this project will study some important harmonic analysis problems related to the second order divergence form elliptic operator. These include: establishing an L^p theory of the commutator of the Kato square root、fractional differential operator、fractional integral and Littlewood-Paley operator associated with the second order divergence form elliptic operator, giving some characterizations of the L^p boundedness、the Morrey spaces boundedness and the weighted L^p boundedness for the Calderón commutator and the fractional differential Calderón commutator, establishing the L^p theory for the Calderón commutator of the fractional differential operator with rough (variable) kernel. Furthermore, the study of this project is a natural development of the operator theory and the boundedness characterization in harmonia analysis as well as a promotion in investigating partial differential equations.

调和分析是现代数学的重要组成部分,其发展过程与偏微分方程密切相关。本项目主要探讨调和分析与偏微分方程领域的若干交叉主题。特别地,我们将研究相关二阶散度型椭圆算子和Calderón交换子的一些重要的调和分析问题,其中包括建立与二阶散度型椭圆算子相关的Kato平方根、分数阶微分算子、分数次积分以及Littlewood-Paley算子生成的交换子的L^p理论,给出Calderón交换子及分数阶微分Calderón交换子在一些函数空间例如L^p空间、Morrey空间以及加权L^p空间的有界性特征刻画,建立带粗糙(变量)核的分数阶微分Calderón交换子的L^p理论。本项目的研究不仅是调和分析领域中算子理论、有界性特征刻画的自然延伸和发展,同时也将推动偏微分方程理论的研究。

项目摘要

Kato平方根算子及分数阶微分算子的相关问题在调和分析的发展过程中具有非常重要的作用。在本项目资助下,我们研究了Kato平方根算子相关交换子、Calderon交换子及分数阶微分算子的某些调和分析问题, 获得了一些重要的研究成果。主要如下:1)建立了高维分数阶微分交换子的有界性特征刻画,将80年代M. Murray提出的一维分数阶微分交换子突破到高维,并给出了该类交换子的Morrey空间有界、(L^\infty, BMO)和(L^1,弱L^1)有界的充要条件; 2)给出了粗糙变量核Calderon交换子的L^2有界性,并给出了其核函数最佳范围,以及粗糙变量核分数阶微分算子和BMO-Sobolev函数生成的交换子的L^2有界性, 并给出了其核函数最佳范围; 3)给出了带复可测系数的二阶散度型椭圆算子Kato平方根与Lip函数生成交换子的L^p有界性和梯度估计;给出了相关分数阶微分算子和BMO-Sobolev函数生成的交换子L^p有界性; 4)证明了相应于带粗糙核的截断奇异积分算子族的加权模变差不等式,此结果本质推广了D.Watson和J. Duoandikoetxea的结果并改进了T. Ma,J. Torrea和Q. Xu的结果。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni

Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni

DOI:
发表时间:2015
2

One-step prepared prussian blue/porous carbon composite derives highly efficient Fe-N-C catalyst for oxygen reduction

One-step prepared prussian blue/porous carbon composite derives highly efficient Fe-N-C catalyst for oxygen reduction

DOI:10.1016/j.ijhydene.2020.03.250
发表时间:2020
3

Ultrafine Fe/Fe_3C decorated on Fe-N_x-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries

Ultrafine Fe/Fe_3C decorated on Fe-N_x-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries

DOI:10.1016/j.jechem.2020.07.048
发表时间:2021
4

Synchronization of Fractional Reaction-Diffusion Neural Networks With Time-Varying Delays and Input Saturation

Synchronization of Fractional Reaction-Diffusion Neural Networks With Time-Varying Delays and Input Saturation

DOI:10.1109/access.2021.3069822
发表时间:2021
5

地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响

地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响

DOI:10.3864/j.issn.0578-1752.2021.02.010
发表时间:2021

陈艳萍的其他基金

批准号:10671163
批准年份:2006
资助金额:20.00
项目类别:面上项目
批准号:11671157
批准年份:2016
资助金额:48.00
项目类别:面上项目
批准号:91430104
批准年份:2014
资助金额:60.00
项目类别:重大研究计划
批准号:10901017
批准年份:2009
资助金额:16.00
项目类别:青年科学基金项目
批准号:10371104
批准年份:2003
资助金额:16.00
项目类别:面上项目
批准号:10971074
批准年份:2009
资助金额:27.00
项目类别:面上项目
批准号:11871096
批准年份:2018
资助金额:53.00
项目类别:面上项目
批准号:10071065
批准年份:2000
资助金额:12.00
项目类别:面上项目
批准号:11271145
批准年份:2012
资助金额:60.00
项目类别:面上项目
批准号:31301330
批准年份:2013
资助金额:22.00
项目类别:青年科学基金项目
批准号:31901816
批准年份:2019
资助金额:24.00
项目类别:青年科学基金项目
批准号:12126325
批准年份:2021
资助金额:20.00
项目类别:数学天元基金项目
批准号:10826046
批准年份:2008
资助金额:3.00
项目类别:数学天元基金项目

相似国自然基金

1

变差算子及二阶椭圆算子的相关问题

批准号:11871096
批准年份:2018
负责人:陈艳萍
学科分类:A0205
资助金额:53.00
项目类别:面上项目
2

相关于微分算子的函数空间和算子问题

批准号:11371057
批准年份:2013
负责人:丁勇
学科分类:A0205
资助金额:50.00
项目类别:面上项目
3

函数演算与Kato平方根问题

批准号:11201319
批准年份:2012
负责人:陈闯
学科分类:A0207
资助金额:22.00
项目类别:青年科学基金项目
4

分数阶算子理论及其应用

批准号:11401525
批准年份:2014
负责人:张超
学科分类:A0205
资助金额:22.00
项目类别:青年科学基金项目