Cancer cachexia is a complex syndrome of progressive weight loss especially devastating to skeletal muscle and adipose tissue, normally liked with high motility. The clinical characterization of cancer cachexia includes a number of signs and symptoms interfering with the imbalance energy intake and energy expenditure. Recent study demonstrated that the abnormal activation of POMC neuron in hypothalamus and the release of alpha-MSH play a key role for the development of cachexia, the aberrant activation of POMC neuron directly reduced appetite and increased metabolic rate, which cause the energy imbalance. In our recent study, we found that,in cancer cachexia mouse model, the constitutively activation of Stat3 in POMC neuron seems to be the pathological feature of cachexia, which directly control the activation of POMC and the release of alpha-MSH, however, the molecular mechanism is not clear. Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that has been shown to regulate cell growth, cell survival, cell invasion, vascular maturation, and angiogenesis, processes that are important for cancer progression, however, its function in hypothalamus and cachexia development is never known. Some clinical study has demonstrated that increased production of S1P in cancer patients, here in this study, we hypothesis that S1P regulated aberrant Stat3 activation in hypothalamus might directly control the peripheral metabolic status, control the development of cachexia. To address this question, we are going to investigate: 1) the influence of S1P to Stat3 activation in hypothalamus and the involved molecular mechanism; 2) the therapeutic effect of S1P signaling inhibitor FTY720 in cancer cachexia by using the relevant disease mouse model; This study will provide direct experimental evidence to test the possibility for the treatment of cancer cachexia by targeting S1P/Stat3 in hypothalamus.
恶液质(cachexia)是肿瘤常见并发症,其发展加重是多数肿瘤治疗失败的重要原因。已知下丘脑相关神经元功能异常,可致厌食和分解代谢亢进,是恶液质形成的重要环节。弓状核POMC神经环路是下丘脑厌食中枢的核心部分,受Stat3信号调控,其过度激活,可致厌食和机体分解代谢加剧。我们的前期研究发现,肿瘤恶液质动物下丘脑Stat3通路明显激活,但原因不清。磷脂鞘氨醇(S1P)是体内的一种脂代谢产物,在肿瘤患者中急剧增加,并诱导肿瘤细胞Stat3持续激活,是肿瘤预后不良的重要机制。我们推测,下丘脑S1P-Stat3轴病理性激活,参与了肿瘤恶液质的形成。本课题拟研究S1P对下丘脑POMC神经元Stat3活化的影响,阐述S1P-Stat3轴在恶液质形成中的作用,探讨以S1P为靶点进行恶液质治疗的可行性。本课题结果将阐明肿瘤相关因子S1P对下丘脑及能量代谢紊乱的影响,为恶液质的防治提供新的思路。
恶液质是肿瘤最为常见的并发症,具有高患病率,高病死率的特点。目前尚无有效的治疗药物,因此需要对其致病机理进行深入的研究。本课题主要针对肿瘤恶液质形成的病理学机制,开展了一系列的研究,我们证明了肿瘤诱发的炎症反应,导致机体出现的系统性代谢障碍,是引发恶液质形成的根本原因。在这一过程中,机体的脂代谢异常引发的磷脂鞘氨醇S1P的大量释放,是导致肿瘤细胞中Stat3持续性激活的关键因素,其特异性受体 S1PR1的表达水平,也是用于肿瘤预后评价的重要指标;而下丘脑Stat3通过的过度激活,是引发食欲下降和基础代谢功能障碍的根本原因;肿瘤通过释放外泌体,产生的热休克蛋白 HSP90可能通过细胞间相互作用,诱发骨胳肌细胞、脂肪细胞及下丘脑POMC神经元Stat3通路的过度激活,引发骨胳肌降解,脂肪的过度脂化,并诱导厌食,导致体重下降,是诱发恶液质形成的病理基础。.1、在分子机制方面,肿瘤细胞中Stat3过度激活的一个重要原因是由于磷脂鞘氨醇的大量释放,导致S1P与其受体S1PR1之前形成一个正反馈通路,引发Stat3的异常持续性激活,这种激活作用,也是引发肿瘤细胞对铂类化疗药物产生化疗抵抗的关键因素。.2、针对Stat3 的过度激活可以诱发肿瘤的生长及耐药表型的形成,我们筛选出了一种天然的黄酮类化合物-木犀草素,该药物可以有效的增加细胞内络氨酸磷酸化酶-SHP1与Stat3的特异性结合,从而抑制Stat3通路的活化水平,对高表达Stat3 的肿瘤细胞具有较强的杀伤疗效。.3、骨胳肌的萎缩,是肿瘤恶液质的重要表型,该现象的形成与骨胳肌细胞内泛素蛋白酶体的异常激活有关。我们的研究发现,肿瘤通过外泌体释放产生的HSP90蛋白,可以被骨胳肌细胞所摄取,引发Stat3 通路的持续性过度激活;而HSP90的抑制剂17-DMAG可以有效地抑制Stat3 通路的活化水平,从而阻断骨胳肌细胞内泛素-蛋白酶体的活化,抑制骨胳肌生长抑制素Myostatin的表达水平,对恶液质的形成,具有重要的保护作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
硬件木马:关键问题研究进展及新动向
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
FOXO1-CPT1信号通路在肉碱防治肿瘤恶液质骨骼肌减少中的机制研究
基于S1P/STAT3信号通路的黄芩素抗肿瘤侵袭转移研究
热疗诱导肿瘤中STAT3的激活及其干预治疗的机制研究
骨髓间充质干细胞瘤化中STAT3信号通路过度激活的作用机制与规避研究