The organic optical waveguide amplifier is a key device in the short-distance communication system. The broadband optical amplifier is very important to increase the information transmission capacity of large-scale high-performance photonic networks. However, the gain bandwidth of waveguide amplifier is just in the C+L band, which limits the application of organic optical waveguide amplifiers in practical optical-communication systems with large capacity signal transmission. The applicant mastered the key technologies in the development of nanoparticle-doped organic optical waveguide amplifiers, which is the technical foundation for solving the above problems. This proposal will carry out the design, preparation and application of polymer based nanocomposite gain media for broadband organic optical amplifier. Using nanomaterial synthesis technology to prepare rare earth nanoparticles with broadband luminescent properties, which are doped with kinds of luminescent active rare-earth ions. Through constructing a core-shell structure, the luminescence properties of rare earth nanoparticles are changed. By optimizing the doping concentration of nanoparticles and combining the organic/inorganic copolymerization technology, the broadband rare earth nanoparticle-polymer composite gain media will be synthesized. Through the design and preparation of waveguide structure, the organic optical waveguide amplifier will be prepared using the broadband rare earth nanoparticle-polymer composite as gain media. The gain properties of the device will be studied in detail. The following research goals will be achieved: 1. Obtain a nanoparticle-polymer composite gain medium with the emission wavelength that covers the S+C+L+U band; 2. Prepare organic optical waveguide amplifiers which can realize signal amplification in this band; 3. Obtain the key technology of material and device fabrication.
有机光波导放大器是短距离通信系统的关键器件;宽带光放大器是大幅度提升信息传输容量的关键。然而,现有增益介质的增益带宽主要集中在C+L波段,限制了有机光波导放大器在超大容量信息传输系统中的应用。申请人在纳米粒子掺杂有机光波导放大器研制中掌握了关键性技术,为解决上述问题奠定了基础。本项目拟开展用于宽带光放大的复合聚合物增益介质的设计、制备与应用研究。利用纳米合成技术制备具有宽带发光性质的稀土纳米粒子,通过多种发光活性稀土离子掺杂、构建核-壳结构,调控稀土纳米粒子的发光性质;通过优化纳米粒子的浓度,结合有机/无机共聚合技术,研制宽带稀土纳米粒子复合增益介质;通过设计和制备波导结构,制备复合聚合物光波导光放大器,并研究其光放大性质。实现如下研究目标:1.获得发光波长可覆盖S+C+L+U波段的复合聚合物增益介质;2.制备在此波段具有光放大功能的光放大器;3.获得可稳定制备相关材料与器件的关键技术。
光放大器是全光通信不可或缺的关键器件;稀土纳米晶掺杂的有机光波导放大器是解决光通信器件平面集成和小型化问题的关键环节。然而现有的光波导放大器主要工作波段为C波段,随着网络通信需求爆炸式增长,如何实现超大容量信息传输和超快实时信息处理以满足不断增长的业务需求已经成为通信领域的研究热点。波分复用技术是解决光通信系统传输容量的关键性技术手段,光放大器的增益带宽、增益大小等性能直接决定光通信网络的通信容量、信号传输距离和质量以及工作波长区域等指标。另外,稀土纳米晶掺杂的有机光波导放大器的增益介质中纳米晶易团聚、不能高浓度掺杂,导致器件稳定性差,成为有机波导放大器走向实际应用的瓶颈。针对以上问题,本项目开展了面向宽带光放大技术的有机/无机纳米复合聚合物设计制备与应用研究,通过共聚将具有宽带发光的稀土纳米晶共价链接在聚合物分子上,从而实现稀土纳米晶高浓度均匀掺杂并将器件的工作带宽从C波段扩展到S+C+L波段。在本项目实施过程中,通过改善多种稀土离子掺杂纳米晶制备技术和表面修饰工艺,通过构建多层核-壳结构,实现了制备宽带发光纳米晶的目的;通过监测聚合物粘度,调控了聚合物基质的链长,同时通过调控纳米晶聚合比例调节了增益介质的折射率,从而提高了纳米晶在增益介质中的掺杂浓度,开展了优化纳米复合聚合物增益介质的研究;通过镶嵌不同种类稀土离子掺杂的纳米晶,拓展了增益介质的工作波段;制备了掺杂铥离子纳米晶及铒、铥共掺杂核-壳型的纳米晶,开展了增强纳米晶在S波段及S+C+L宽波段发光强度的研究,利用优化了尺寸及发光性质的纳米晶,制备了倒脊型有机-无机复合光波导放大器,实现了S波段及S+C+L宽波段光放大。本项目实现了如下研究目标:1.制备了均匀镶嵌不同种类稀土纳米晶的复合聚合物增益介质;2.成功制备了增益波长在S、C波段及S+C+L宽波段的聚合物基光波导放大器;3.获得了可稳定制备相关器件的关键技术。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于铒掺杂纳米晶的高增益聚合物光波导放大器
含氟稀土共轭聚合物波导放大器
面向规模集成的硅基高增益光波导放大器及激光器研究
用于有机波导放大器的近红外发光聚合物材料研究