This Research Project lies in the area of topological fluid mechanics, focusing on topological characterizing tools for fluid knots. We aim to achieve polynomials and other knot topological invariants that are more powerful than linking numbers, the commonly-used tool of today. The method of linking numbers was developed in 1969-1992 by Moffatt from Cambridge and his student Ricca (major Participant of this Project). It works well for topologically conserved systems, but fails in treating non-conserved phenomena such as magnetic reconnections and breaking processes of complex knots. It is weak in topological characterization and in energy and other dynamical computations. In order to solve this problem, very recently Ricca and I (Chief Investigator of this Project, Liu) developed a method of polynomial topological invariants for fluid knots, which has proved to be powerful and received much interest from the international society of fluid dynamics. The academic honors awarded to this method include a cover-page publication of Journal of Physics A and inclusion in the 2012 Highlights (annual collection) of the journal, as well as several keynote talks in highly-ranking international conferences held by Cambridge U, Moscow U, UC Santa Barbara, International Union of Theoretical & Applied Mechanics (IUTAM), the European Science Foundation (ESF), etc....The present project is a continuation and development of our preceding work. Expected outcome includes constructing the HOMFLYPT knot polynomial, Kontsevich integral and Vassiliev invariants based on fluid helicity, as well as designing experiments to further test our established theory of polynomial topological invariants for fluid knots.
本项目着重于流体力学的拓扑方面,目标是获得比目前国际通用的缠绕数方法更强的流体纽结拓扑辨识工具,如多项式及其他拓扑不变量。这一研究很重要,原因在于纽结的拓扑与能量密切相关。缠绕数方法是1969-1992年由剑桥大学Moffatt和Ricca(本项目主要参与人)发展起来的,在处理拓扑守恒系统时表现较好;但对拓扑非守恒现象(如磁重联和纽结碎裂)则暴露出严重不足,尤其是在拓扑辨识能力和能量计算一致性方面。为解决这个问题,最近本项目申请人与Ricca合作发展出一套纽结多项式方法。该方法引起理论界广泛关注,目前已获多项荣誉,包括多个国际高等级学术会议全会报告(Keynote talk)等。本项目是这一工作的继续和向更高层次的发展。预期结果包括:基于流体螺旋度,构造HOMFLYPT纽结多项式、Kontsevich积分和Vassiliev拓扑不变量;对已建立的流体纽结多项式理论进行进一步实践检验。
本项目执行顺利,成果丰富,具有重要的科学意义。.项目背景:流体涡旋激发的拓扑示性需要更有力的理论工具,超越传统的纽结缠绕数方法,从而把缺陷结构的判定转化为拓扑代数问题来研究。.项目内容包含三个方面。首先,发展流体涡旋纽结的拓扑示性工具,得到适当的代数空间并加以应用。其次,将上述方法应用到早期宇宙背景场,在流体力学绘景下得到多项式拓扑不变量来标示暗能量场拓扑缺陷所形成的宇宙弦;应用到二维新拓扑材料,研究量子反常霍尔系统的纽结理论描述。第三,举办拓扑流体力学和纽结场论方面的国际会议,将这一国际的热点方向在我国进行大力普及与推广。.重要结果和关键数据:首先,我们重点研究流体纽结多项式不变量工具的使用,以实现Arnold(Wolf奖得主)的猜想:把物理系统的复杂度与代数拓扑空间绑定,从而前者向低复杂状态的自发退化过程可以用后者的代数降阶过程来描述。我们有两个发现;一是环面流体纽结/链环的多项式数值上呈单调递降;另一个是,如果把流体纽结多项式对应到抽象代数空间的点,则物理退化过程中所涉及到的一系列中间状态,其对应点恰形成单调降落曲线。此事实恰可用来解释最近加州戴维斯分校Vazquez组DNA重组实验、芝加哥大学Irvine组水涡旋重联实验所观察到的现象。其次,上述方法成功应用到宇宙弦拓扑描述和量子霍尔效应方面,为设计高拓扑数的二维新材料提供了新思路。第三,举办的暑期学校和国际学术论坛是继欧洲(2017德国弗莱堡大学)、北美(2019美国明尼苏达大学)之后在亚洲举办的又一次“讲习班+学术研讨会”模式的盛会。历时10天,共有来自12个国家的学者学生约80人参加,其中外籍20人。活动采用云会议模式全程直播,授课讲义将由Springer出版社结集出版。.科学意义:项目成果可为探索湍流的结构形成和演化机理提供新思路,使拓扑流体力学这一国际主流方向在我国获得蓬勃发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
敏感性水利工程社会稳定风险演化SD模型
三级硅基填料的构筑及其对牙科复合树脂性能的影响
2A66铝锂合金板材各向异性研究
耗散粒子动力学中固壁模型对纳米颗粒 吸附模拟的影响
硫化矿微生物浸矿机理及动力学模型研究进展
纽结和图的多项式不变量
纽结补和纽结不变量的研究
纽结不变量的研究
带子图、纽结和不变量