Abstract: In this project, we use the theory of Lie groups and Lie algebras to study some related geometric and algebraic problems. We mainly consider the following problems: Homogeneous parakaehler manifolds and dipolarizations in Lie algebras; certain rings of highest weight vectors; the groups of isometries of Finsler spaces; totally geodesic submanifolds of Riemannian symmetric spaces; the structure of Novikov algebras. We obtain the global classification of semisimple homogeneous parakaehler manifolds; prove the stability of certain rings of highest weight vectors; prove that the group of isometries of a Finslet space is a Lie group; obtain the.classification in the exceptional cases of the totally geodesic submanifolds of Riemannian symmetric spaces related to two commutative Cartan involutions; obtain the classification of low-dimensional.Novikov algebras and their realizations. This project have published 21 papers and 13 of them have been cited by Sci
李群,李代数及其相关的几何与代数结构是理论数学中重要的研究课题,与数学,物理等学科的许多领域密切相关。本项目将侧重于用代数方法解决近年来引人注目的一系列几何问题。即通过李代数的双极化来研究齐性仿凯勒流形,通过李代数相容的左对称代数研究流形上的仿射结构,通过对李群李代数的自同构的研究了解对称空间子流形的某些性质与结构。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
针灸治疗胃食管反流病的研究进展
卫生系统韧性研究概况及其展望
李群及李代数
李群李代数及其表示
李群与李代数的表示及其相关课题的研究
李群、李代数及其表示理论