Preventing nonspecific protein adsorption and bacterial adhesion onto surfaces simultaneously and reducing surface biofouling are the hot and difficult spots in many of research fields, such as biomedical science and biochemical separation. The main technique for resisting protein attachment and bacterial adhesion involves the functionalization of surfaces with hydrophilic polymer materials currently. However, there exist several intrinsic disadvantages including complicated construction, many interference factors, and incapability in eradicating the biocontaminants. The aim of this project is to disperse water-soluble protease and broad-spectrum antimicrobial into hydrophobic polymer matrix uniformly by the use of amphiphilic carbonaceous particles (denoted as ACPs) carriers, and then construct several multifunctional antifouling surfaces capable of eliminating the surface fouling by proteins and bacteria in view of the strategy of degradation and killing of the biocontaminants. The details include (i) fabrications of ACPs carriers with the following features using biomass as the original materials, such as intact structure, large surface area, versatile functional surface and high dispersibility in solvents of different polarities, (ii) syntheses of ACPs conjugates of hydrophilic polymer-trypsin and polyquaternium respectively and the evaluation and regulation of their bioactivities and antifouling performances,(iii) construction of several hybrid polymeric films containing different types of ACPs conjugates, and the investigations for their interaction with protein and bacteria, the explorations for their dual mechanism of antifouling and antibacterial, and the possibility of their practical applications in biomedical science. This project will present a facil and highly effective antifouling technique and the resultant products hold a promising future for the application in biomaterials, biosensors, food packing, water processing and other related fields.
阻止蛋白质/细菌的表面非特异性吸附/粘附,减少表面生物污垢,是生物医学、生化分离等研究领域的热点和难点。现有技术主要利用亲水分子膜阻止/排斥蛋白质/细菌的抵近或贴壁,存在构建复杂、干扰因素多、无法根除污染物等问题。课题以两亲碳渣颗粒(ACPs)为载体,将水溶性蛋白酶和广谱抗菌剂均相分散在疏水性基质中,利用接触介导的降解/杀灭污染物策略,构建可去除蛋白质/细菌污垢、重复使用的活性抗污表面。内容涉及:1)利用生物质为模板,制备结构完整、表面积大、官能团丰富、在极性/非极性介质中稳定分散的ACPs;2)合成ACPs的亲水聚合物-胰蛋白酶、高分子季铵盐偶联物,评价并调控其生物活性和抗污性能;3)构建偶联物-疏水聚合物杂化膜,使之与蛋白质、细菌相互作用,探索其抗污、抗菌双重机制及生物医学应用的可行性。课题提供了一项高效简明的抗污技术,产品有望在生物材料、生物芯片、食品包装、水处理等相关领域展开应用。
如何利用简单方法,将水溶性功能分子与疏水聚合物基质均匀融合,构建各种功能膜/涂层/表面,是一个待解决的技术难题。现有技术利用物理吸附或共价接枝等手段将功能分子固定在疏水聚合物基质表面,存在功能效期短、工艺复杂的缺陷。利用磷酸锆、二氧化硅、碳纳米管、石墨烯等无机载体,可以实现功能分子与疏水聚合物基质的均匀融合,但载体自身需预先进行改性处理,以便与基质相容。两亲碳渣颗粒(ACPs)具有质轻、表面功能团丰富、尺寸可调等特点,既可作为功能分子的载体,也可作为聚合物基质的填料。课题首先利用水热合成方法和不同生物质原料制备了不同形貌大小的ACPs材料。其次,利用聚4-乙烯吡啶、聚乙酰亚胺、季铵化聚乙酰亚胺和壳聚糖、多粘菌素、Ag+/Ag、肝素等水溶性功能分子对其进行后修饰,制备了多种ACPs衍生物。这些基团的修饰,不仅未影响ACPs材料的两亲特性,而且给予其抗菌、抗凝、内毒素吸附等功能。最后,利用溶剂共混法,将ACPs衍生物掺杂在疏水聚合物(聚偏氟乙烯、聚氨酯、硅橡胶、聚醚砜等)基质中,构建了多种有机-无机膜/涂层/表面。研究发现,ACPs衍生物均能与疏水聚合物一致融合。ACPs衍生物的掺杂不仅有利于疏水聚合物基质极性和力学性质的改善,而且给予其抗菌、抗凝、内毒素亲和功能。本课题的研究为上述问题的解决提供了一条简明有效思路,相关产品有望在生物医学、制药、日用品、皮革、塑料等领域展开应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
针对MMP-9靶基因的miRNAs筛选及外源性miRNAs干扰MMP-9表达对乳腺癌侵袭转移的影响
碳/硅杂化膜的制备、微相结构及膜相中渗透分子传递机理
基于海洋天然产物抗污生态特征的抗细菌生物膜功能分子的发现
催化杂化膜制备、膜体系的分子扩散及膜催化机理研究
基于稀土掺杂上转换/功能聚合物杂化微球构建光子晶体膜及协同发光机制研究