Carbon membrane, a high performance carbon based novel membrane material, has exhibited the gas penetration ability, which could not meet the requirements of industrial application due to the thick dense membrane layer. Effectively reducing the thickness of membrane has become the key to improving the gas penetration ability and achieving large-scale industrial application of carbon membranes. In this project, the porous graphene materials in molecular-scale are used as precursor to prepare the graphene/carbon composite membrane with high gas permeation rate, of which the porous structure and gas separation performance are adjusted by controlling the porous structure of the pores in the layers and the pores coming from the stacking of the layers and the parameters of membrane preparation process. And the controllable preparation of high-performance graphene carbon membranes could be achieved. The effect of the structure, surface property and the preparation parameters of the porous graphene to the structure and property of the porous graphene membranes and the related carbon membranes are explained. The structure - activity relationship between the structure and property of membrane is discussed. The gas molecular diffusion and penetration mechanisms through the porous graphene membrane and the related carbon membranes are revealed. Moreover, the effect of the surface property of porous graphene membranes and the related carbon membranes to the gas molecules is researched. . Implementation of this project will be effective to prepare the gas separation carbon membrane materials with both high gas permeation rate and gas selectivity, enrich the basic theory of membrane science and facilitate the industrial applications process of the high performance carbon membrane materials.
炭膜作为一种高性能新型炭基膜材料,较厚致密膜层使其展现出的气体渗透能力无法满足产业化应用的要求。有效地降低膜层厚度已成为提高炭膜气体渗透能力,实现炭膜大规模产业化应用的关键。本课题以具有分子尺度的多孔石墨烯为前体制备高通量的石墨烯复合炭膜。通过控制多孔石墨烯片层孔和堆砌孔隙结构及相关制膜工艺过程与参数,精细调控多孔石墨烯炭膜孔隙结构及气体渗透分离性能,实现高通量石墨烯复合气体分离炭膜的可控制备。诠释多孔石墨烯前体的结构和表面性质及制备工艺参数对多孔石墨烯膜或炭膜结构性能的影响及规律;膜结构与性能的构效关系;揭示气体在多孔石墨烯复合膜或炭膜孔道中的渗透传递机制;多孔石墨烯膜或炭膜的表面性质对气体分子的作用机制。 . 本课题的实施有助于制备出具有高渗透通量、高分离选择性的高性能气体分离炭膜材料,丰富和发展膜科学的基础理论;促进和加快高性能炭膜材料的产业化应用进程。
炭膜作为一种高性能新型炭基膜材料,较厚致密膜层使其展现出的气体渗透能力无法满足产业化应用的要求。有效地降低膜层厚度已成为提高炭膜气体渗透能力,实现炭膜大规模产业化应用的关键。本课题成功制备氧化石墨烯(GO)、刻蚀氧化石墨烯(HGO),采用不同的制膜方法制备得到GO复合膜和HGO复合膜,并进行了有效的结构和性能调控。但是由于石墨烯膜的自身结构限制,相应膜的渗透性和选择性很低。设计制备了混合基质GO/PAA复合膜,炭化后完好的保持了石墨烯膜的片层结构,得到柔韧性好、渗透分离性能优异的自支撑石墨烯炭膜,气体在石墨烯膜和石墨烯炭膜中的渗透机制为分子筛分和表面吸附扩散共同作用。.利用GO和羧基化和胺基化的GO原位合成制备了GO-Polymer,制膜、炭化后制备出渗透性能优异的石墨烯杂化炭膜,其中羧基官能化制备的石墨烯杂化炭膜的二氧化碳渗透系数超过12000barrer,二氧化碳和氮气的选择性在55以上,该渗透性能为目前气体膜分离领域的最优性能。气体在石墨烯杂化炭膜中的渗透机制为表面扩散和分子筛分共同作用机制。.本项目已发表研究论文14篇,申请国家发明专利9项,实用新型专利1项,培养硕士研究生2人,博士研究生3人。本课题的实施有助于制备出具有高渗透通量、高分离选择性的高性能气体分离炭膜材料,丰富和发展膜科学的基础理论;促进和加快高性能炭膜材料的产业化应用进程。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
混采地震数据高效高精度分离处理方法研究进展
人β防御素3体内抑制耐甲氧西林葡萄球菌 内植物生物膜感染的机制研究
具有不对称结构的自支撑柔性石墨烯炭膜的设计、制备及渗透性能的研究
具有介微梯度孔道结构炭膜的设计、可控制备及气体渗透机理的研究
氧化石墨烯骨架调控支撑层微结构的正渗透复合膜制备及其应用
气体分离炭膜孔结构形成机制的研究