The orders under the Electronic Commerce environment have the characteristics such as little demand, large batch, real-time, uncertainty and etc. We will partition these orders according to their demands, recombine them, and optimize their scheduling. Orders’ requirement to product is of variety, which causes uncertainty of orders’ release time, machines’ set up and maintenance time, and etc. We will research order scheduling problem that orders’ processing time are functions of starting time based on truncated processing time. We will construct corresponding mathematical model. We will research multi-objective optimization problem such as minimize each demand’s maximum completion time in these orders, minimize orders’ completion time, minimize the weighted delay orders, maximize customers’ satisfaction and so on. We will establish multi-objective optimization model. Customers’ orders include many kinds of product from different place. We should optimize orders’ production cost, which involves orders’ production cost in local job shop and delivery cost that is used to delivery these jobs to designated packing place(completion of orders). We will research problems that integrate orders’ scheduling and delivery. Orders have the characteristics of real-time and large volatility. Considering the due date of orders, we will research emergency orders’ scheduling problem, minimize the impact on the costs caused by the change of order scheduling, and establish a reasonable mathematical model. We will research different meta-heuristic algorithms’ advantage and boundedness, design appropriate algorithms for these mathematical models. Using benchmark problems’ data or adaptable data to do simulation experiments, compare their results and test the algorithms’ effectiveness.
电子商务环境下订单具有小批量大批次、实时不确定性等特点,将订单进行分拆与重组后进行优化调度。订单对产品需求的多样性导致订单在加工前的准备时间、机器的安装维护时间等因素具有不确定性,研究基于截尾的加工时间是开工时间函数的订单调度问题,建立数学模型。研究多目标优化问题,如:最小化订单中需求的最大完工时间;最小化订单完成时间;最小化加权延误订单数;最大化顾客满意度等,建立多目标优化数学模型。订单可含多种产品,来自不同产地,需优化产品在作业车间的生产费用和将其送达指定打包地点(订单完成)的配送费用,将订单调度与配送相结合进行研究。订单具有实时性与大波动性的特点,考虑交货期限制,研究紧急订单调度问题,最小化调度变化对生产及配送费用的影响,建立合理的数学模型。研究不同智能优化算法的优点与局限性,根据所建模型特点设计适合的算法。利用标准测试问题或改造后的数据进行仿真实验,比较运算结果,验证算法的有效性。
本研究根据电子商务环境下订单的特点,将订单调度问题转化为工件调度问题。研究了具有学习、恶化、资源约束等条件的加工时间可变的订单调度优化问题。建立了多种加工时间可变的订单调度问题的数学模型,根据各个具体问题的特点,考虑最小化目标函数的问题。目标函数包括最小化订单中需求的最大完工时间;最小化订单完工时间加权和;最小化加权延误订单数;最小化等待时间偏差的绝对值之和;最小化完工时间偏差的绝对值之和等。对提出的问题证明了它们是多项式时间可解的,并给出相应的启发式求解算法。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
内点最大化与冗余点控制的小型无人机遥感图像配准
面向云工作流安全的任务调度方法
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
物联网中区块链技术的应用与挑战
电子商务订单实时优化处理的智能系统研究
复杂生产环境下的随机客户订单调度问题研究
基于时间成本优化的面向订单制造企业生产与运输协同调度问题模型与算法研究
动态不确定环境下柔性作业车间调度及其群体智能优化算法研究