In the past few years, fluorinated conjugated polymers(FCPs) have become an attractive topic in organic electronic research area due to their unique electronic and solid state properties. However, the traditional synthesis of the FCPs is still very challenging. For example, the reactions require harsh conditions and have a limited tolerance of functional groups. Also, the selectivity of the fluorination of aromatic system and the yield of the reaction are low. Due to these synthetic challenges, the application of FCPs in organic electronic field is not fully developed yet. In this project, based on DFT computational studies, transition metal catalysts with different ligands and metal centers will be designed and synthesized. Furthermore, highly efficient and selective fluorination of heteroaromatic compounds will be studied with optimizing catalysts, substrates and reaction conditions. Also, the mechanism will be probed to understand the relationship between the reaction conditions (structures of the catalysts, etc.) and the efficiency and selectivity of fluorination. At last, new fluorinated conjugated organic/polymeric materials will be designed and synthesized based on the novel fluorinated heteroaromatic molecules. Also, the relationship between the fluorination of materials and their photo-electronic properties will be studied. This project aims at development of novel synthetic methodologies of fluorinated heteroatom aromatic molecules, and a new type of fluorinated organic/polymeric materials with excellent photo-electronic properties.
含氟共轭有机/高分子材料近年来逐渐成为有机光电材料领域的研究热点。然而,含氟共轭有机/高分子的合成仍然具有挑战性,传统的共轭体系氟化反应条件苛刻、官能团容忍度低、氟化位置选择性不高、反应产率低;合成上的挑战导致含氟共轭有机/高分子的应用受到限制。本项目中,将基于DFT计算,设计并合成具有不同配体和金属中心的过渡金属的催化剂;然后,通过催化剂、反应底物和反应条件等的设计和选择,实现杂环共轭分子的高效选择性氟化并研究其反应机理,探讨催化剂结构等对氟化反应效率和选择性的影响;最后,基于含氟芳香杂环分子,合成新型的含氟共轭有机/高分子材料并探讨氟原子引入同材料的光物理性能和聚集态性质的关系。本课题旨在研发含氟芳香杂环分子的高效合成方法学,并得到一类具有优良光电性能的含氟有机/高分子半导体材料。
含氟有机半导体材料通常具备性能稳定,迁移率高等优点,目前已经被广泛的应用于有机场效应管、太阳能电池等领域。因此,高效的合成该类材料是促进有机电子产业发展的重要的基础。.该项目系统研究了芳香杂环分子的选择性催化氟化,并初步探索了其反应机理。然后,继续深入探索了氟原子引入对于有机半导体材料光物理和器件性能的影响。相关研究结果表明,氟原子的引入能够同时降低有受体机半导体材料的能级,同时能够提高材料的偶极矩。因此,氟原子的引入有利于给受体激子的分离和电荷的传输,从而提高有机太阳能电池的能量转换率。.因此,该项目有利于实现高性能有机半导体材料的绿色、高效合成,降低有机半导体材料的生产成本,并能够为有机电子产业化铺平道路。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
结核性胸膜炎分子及生化免疫学诊断研究进展
原发性干燥综合征的靶向治疗药物研究进展
基于Pickering 乳液的分子印迹技术
Wnt 信号通路在非小细胞肺癌中的研究进展
含氟稀土共轭聚合物波导放大器
含金属光折变共轭聚合物的分子设计与合成
含大共轭基元超分子聚合物的设计合成和性能
小分子氟化开环反应及其在含氟聚合物合成中的应用