Low-sensitive high-energetic (LSHE) materials possess both high energy density and high safety, which are significant to the defense industry and civil engineering. Investigation and development of cocrystal explosives provides a new path, from the molecular level, for the design of new LSHE materials, which is of extensive and important academic value and application prospects. The present project intends to realize high-accuracy energy calculations as well as accurate predictions of the physical properties, safety and detonation performances for large-scale cocrystal explosive systems, according to the self-development of the large-scale parallel first-principles software. Then the practical method for predicting the safety and performance of the explosives is established. Based on this, we plan to make systematically calculations on the cocrystal explosives composited with the conventional high explosives of CL-20 and to study the method to characterize the geometrical structure, chemical composition, molecular packing of the constitution, intermolecular interactions types and strength. The objective of the present project is to interrelate the structures and the corresponding physical properties, safety and detonation properties of the cocrystal explosives, and establish theoretical foundations for the design of new LSHE cocrystal explosives. Taking the theoretical relation as a guide, we can arrange the high-energy density molecules according to certain rules to design new LSHE cocrystal explosives. This project will serve as a theoretical guidance for preparation process in experiments and practical application in engineering.
高能钝感炸药兼备较高的能量密度和安全性,对国防工业和民用工程至关重要。研究和开发共晶炸药从分子层面为新型高能钝感炸药的设计开辟了一条新的途径,具有广阔而重要的学术价值和应用前景。本项目拟通过自主研发的大规模并行第一原理软件实现大体系共晶炸药的高精度能量计算,及物性、爆轰性能和安全性的精确预测,建立切实可用的炸药性能预测方法。在此基础上,对常规高能炸药CL-20及其共晶体系展开系统计算,研究共晶炸药的几何结构、化学组成、组分分子堆积、分子间相互作用类型与强度的表征方法。本项目的目标是将共晶炸药的结构与其物性、安全性和爆轰性能建立起对应关系,为新型钝感高能共晶炸药的设计奠定理论基础。并以此理论关系为指导,将高能量密度的炸药分子按照一定的规律排列堆积,设计高能-钝感共晶炸药,为实验工艺制备和实际工程应用提供理论指导。
高能炸药是国防的战略保障,关键技术的突破只能依靠自主研发。但我国的炸药模拟计算普遍基于国外商业或开源软件,这些软件在计算精度、计算效率和并行可扩展性方面存在严重问题。. 通过本项目的执行研发了HASEM软件,实现了针对含能材料的高精度能量/结构计算,大规模并行能力和关键性质的模拟计算功能。HASEM是当前我国自主研发的唯一一个针对含能材料的原子尺度模拟软件,近三年支撑国内外多家研究机构成功解决了一系列基础和工程问题。本项目基于HASEM软件对200余种炸药的数十种物化性质进行了高通量计算,针对共晶炸药建立了有效的晶体结构-稳定性-爆轰性能关系,并将该理论推广至传统炸药、高氮类炸药,结合实验成功设计、制备了一系列新型高能、钝感炸药。. 三年来在Science,ACS Central Science,J. Phys. Chem. Lett.等顶级期刊上发表学术论文21篇(另有1篇已接收,2篇在审),创新成果被引入英文教科书《Solvation Dynamics》,被《科学通报》观点、JACS等顶级期刊引用报道,被ACS Central Science选为Front cover和Hero image在杂志官网进行宣传;相关研究工作多次以特邀报告的形式在国内外重要会议上展示,获得领域专家的广泛认可。项目资助的研究成果2018年入围中国工程物理研究院科技创新TOP20,2019年获中国工程物理研究院科技创新二等奖(省部级)。项目负责人2018年获全国爆炸力学“优秀青年学者”(全国共10人)荣誉称号,同年获聘所在单位材料团队负责人。通过项目的支持,与湘潭大学联合培养博士研究生一名。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
结核性胸膜炎分子及生化免疫学诊断研究进展
CL-20/TNB共晶炸药的合成及性能研究
共晶炸药及其高分子复合材料结构、性能的分子动力学研究
新型“类石墨烯”单质炸药的构筑及能量与安全性能研究
TATB炸药颗粒品质与起爆性能关系研究