Along with the growing demand of precision component with complex surfaces in high-end equipment manufacturing industry, complex surface quality monitoring and control gets more and more challenges especially due to the surface deformation. This project is inspired by the challenge to measure the geometric coordinates of complex and deformed surfaces, which is exceedingly difficult to carry out and extremely inefficient by nowadays existing five-axis tactile measurement techniques. By adopting the emerging measuring sensing technology, i.e., the consecutive tactile measurement probe, this project aims to develop the new theory and techniques of five-axis measurement path planning, so that to acquire coordinates data of complex deformed surfaces in the high-speed and consecutive manner. The project plans to focus on four aspects: (1) Analyze the characteristics of highly efficient five-axis consecutive measurement path for complex surfaces; (2) Shape-adapted and highly efficient five-axis consecutive measurement path planning techniques for complex surfaces; (3) Design and optimize the preparation processes to implement the following practical five-axis consecutive measurement for the complex deformed surfaces; (4) Construction of the adaptive five-axis consecutive measurement system and its experimental validation. On this basis, the extracted characteristics would provide the criterion to plan highly efficient five-axis consecutive measurement paths for the complex surfaces. The real-time measurement path correction strategy will guarantee the measurement path adaptive to the surface deformation. The design and optimization of the measurement preparation processes will improve the reliability and efficiency to implement the practical five-axis consecutive measurement. The outcomes of this project will provide the highly efficient and accurate techniques for the complex and deformed surfaces, result in significant improvements on the capability and level of inspecting and controlling the surface quality especially for the precision machining of complex surfaces with high tendency to deform, and also will tremendously promote the development of five-axis tactile coordinate measurement techniques.
随着复杂曲面精密零件在高端装备制造领域的需求日益增长,曲面变形给复杂曲面质量监测和控制带来的挑战日益突显。本项目针对复杂变形曲面五轴三坐标测量难度大、效率低的难题,结合新兴的连续扫描测头技术,研究形状自适应的五轴高速扫描式三坐标测量轨迹规划新机制。具体研究内容包括:(1)五轴高速扫描式三坐标测量轨迹属性分析;(2)形状自适应的复杂曲面五轴高速扫描式三坐标测量轨迹规划;(3)适于复杂变形曲面的五轴扫描式测量预执行设计与优化;(4)五轴扫描式自适应测量的试验系统开发与验证。通过探明五轴高速扫描轨迹属性,制定五轴高速扫描轨迹规划准则,通过采用实时路径修正的策略,实现对曲面变形的自适应,通过测量预执行的设计与优化,提高扫描执行的稳定性和效率。研究结果将为复杂变形曲面零件提供亟需的高精、高速的测量手段,推动复杂曲面精密制造过程中对曲面变形的质量监测和控制能力的突破,促进五轴三坐标测量技术的发展。
由于制造过程中复杂的工艺流程、难以准确控制的工艺参数或服役在极端的工作环境中,曲面变形广泛地存在于航空航天大型复杂曲面零件中。为检测和控制复杂变形曲面零件的质量,高速、高精度复杂曲面测量十分关键。然而,传统的五轴三坐标测量采用逐点测量的模式且是非五轴联动的,测量操作难度大、效率低是其难以克服的技术瓶颈。随着新兴的连续扫描式测头技术出现,五轴联动的扫描技术已在简单曲面的测量中显现出了高精和超高速的测量能力。但由于五轴扫描式测量与逐点式测量模式迥异,目前对于将五轴扫描式测量技术应用于任意复杂变形曲面还缺乏有效的规划和控制方法。针对上述问题,本项目围绕基于新兴扫描式测头技术的高速扫描式五轴三坐标测量新理论和新方法展开研究,实现了高精、高速的复杂变形曲面的三坐标测量。研究了五轴扫描系统运动特性与复杂几何特征扫描轨迹间的耦合关系,提出了一种基于骨架线引导的复杂曲面五轴高速扫描轨迹规划方法框架,并通过整体叶盘叶片、发动机多孔箱体表面等试验验证了提出方法的有效性;研究了基于实时测量数据反馈的变形曲面高速扫描式测量轨迹规划与控制方法,实现了基于有序、高密度测量数据实时重构实际测量曲面并对待测量曲面进行预测,进而可根据实际测量曲面实时调整当前扫描轨迹以控制测杆形变;基于商业几何引擎ACIS+Hoops和三坐标测量通讯协议I++搭建了五轴高速测量轨迹规划与控制软件平台,实现了基于复杂几何模型的五轴扫描轨迹规划与测量过程控制。项目成果对推动复杂曲面精密制造过程中监测和控制曲面变形的能力与水平提升、促进五轴三坐标测量理论和技术的发展具有重要的科学意义和经济价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
气载放射性碘采样测量方法研究进展
五轴联动机床几何误差一次装卡测量方法
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
基于全模式全聚焦方法的裂纹超声成像定量检测
基于图卷积网络的归纳式微博谣言检测新方法
复杂曲面五轴数控渐进成形轨迹规划与生成研究
自由曲面五轴连续式测量轨迹生成、优化及速度规划
复杂型腔高速切削加工的隐式螺旋刀具轨迹规划方法与应用
基于恒-变曲率组合轨迹的五轴数控机床全局精度场测量方法研究