Spurred by the ever-increasing internet bandwidth requirements, it is expected that the capacity of existing optical fiber telecommunication systems will no longer meet the requirements of backbone networks around 2025. It is of great significance and urgency to develop new optical communication systems and their key techniques with large capacity and high spectrum efficiency. Nyquist optical time-division multiplexed (Nyquist-OTDM) technique is proposed as a brand new single-channel optical transmission technology. It is more spectrally efficient because no guard bandwidth is required when compared with the widely studied Nyquist-WDM technology; and it is more time efficient because no guard interval is needed when compared with the well-known OFDM technology. Thus Nyquist-OTDM technology is anticipated to further increase the efficiency of existing optical communication systems in terms of large capacity and high spectrum efficiency. This project is expected to study and research on the generation of ultra-fast Nyquist pulse train and the reception of Nyquist-OTDM signal in ultra-high speed Nyquist-OTDM transmission systems. Nyquist pulse train with ultra-narrow pulse-width, low-noise and high stability as well as ISI-free reception of Nyquist-OTDM signal will be the targets and subjects of this project. This project is also expected to achieve and carry out a series of single-channel 5 Tbit/s Nyquist-OTDM transmission experiments based on the above mentioned key technologies, providing theoretical and technical basis for future ultra-high speed Nyquist-OTDM systems.
随着骨干网业务不断增加,现有光纤通信系统容量将在2025年前后达到饱和,研究和发展突破性的大容量、高谱效率光纤通信系统及其关键技术具有现实迫切性。奈奎斯特时分复用技术是最新提出的一种单信道光纤传输技术,与奈奎斯特波分复用技术相比,不需要频域保护带宽;而与正交频分复用技术相比,不需要时域保护间隔;能够进一步提高系统效率,成为现阶段满足光纤通信系统大容量、高谱效率要求的新型重要可行方式。本项目重点对超高速单信道奈奎斯特时分复用传输系统中的超快奈奎斯特脉冲产生机理和时分复用奈奎斯特信号的接收机制开展研究。攻克超快、低噪声、高稳定度的奈奎斯特脉冲产生和无码间干扰的超高速时分复用奈奎斯特信号接收关键技术,预计完成一套速率大于5 Tbit/s的单信道奈奎斯特时分复用系统传输验证实验,为实现超高速奈奎斯特时分复用传输系统奠定理论与技术基础。
随着骨干网业务不断增加,现有光纤通信系统容量将在2025年前后达到饱和,研究和发展突破性的大容量、高谱效率光纤通信系统及其关键技术具有现实迫切性。奈奎斯特时分复用技术是一种有效的单信道光纤传输技术,与奈奎斯特波分复用技术相比,不需要频域保护带宽;而与正交频分复用技术相比,不需要时域保护间隔;能够进一步提高系统效率,成为现阶段满足光纤通信系统大容量、高谱效率要求的新型重要可行方式。本项目建立了超高速单信道奈奎斯特时分复用理论模型、仿真和实验平台。通过对单信道传输速率的极限探索,掌握了超高速极限奈奎斯特脉冲产生、相干匹配采样、时间透镜变换等关键技术,上述关键技术不仅是超高速单信道光传输系统的关键技术,也能够促进超宽带光频梳生成、超高速全光信号处理等领域的发展。项目发表高水平论文25篇,申请或授权发明专利3项。培养博士后1人,博士生5人,硕士生9人。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于铁路客流分配的旅客列车开行方案调整方法
超声无线输能通道的PSPICE等效电路研究
强震过程滑带超间隙水压力效应研究:大光包滑坡启动机制
近红外光响应液晶弹性体
TVBN-ResNeXt:解决动作视频分类的端到端时空双流融合网络
Micro-26a协同调节PTEN/AKT与BMP/SMAD信号通路促进大面积骨缺损修复的机制研究
基于时频变换的奈奎斯特时分复用系统时钟提取与解复用关键技术研究
超奈奎斯特非正交频分复用系统基础理论与关键技术研究
奈奎斯特与超奈奎斯特光信号产生与信号处理
超奈奎斯特速率传输的高谱效水声通信研究