The stability of the sensitive food bioactives has an important impact on their bioavailability and application. It is important to explore a novel method to protect and remain their bioactivity, and increase their dispersibility in food. In this project, we propose a new approach to explore a new way to improve their physical chemical stability and bioactivity at the same time. Firstly, a structurally well-controlled amiphiphilic peptides will be obtained by hydrolyzing the whey protein by a special proteinase which was produced by our lab. This amiphiphilic peptide has a well-defined structure, which can self-assemble into nanotubes and micelles. The aim is to find a way to control the self-assembly process in order to obtain well-controlled nanostructure. Secondly, Two kinds of compounds will be used as the model molecules to study the interaction with the nanostructure. β-carotene is used as the model for hydrophobic bioactives, and the anthocyanin is used as the model for hydrophilic bioactives. The interaction between β-carotene and the whey protein micelles, and the interaction between anthocyanin and whey protein nanotubes will be studied. The mechanism of the interplay between bioactives and the self-assembled structure will be explored. In the end, the stability, dispersibility and bioactivity will be tested in the real food system and Vitro Gastrointestinal fluid. This research will be meaningful for studying the interplay between the structure and the property of the self-assembled structure. It may be beneficial for the application of the self-assembled whey protein in food industry. The aim is to expand the usage of the bioactives in all kinds of foods, in the same time,to improve the nutritional and health value for food.
敏感型食品活性因子的稳定性问题不仅降低了它的生物利用率还限制了它在食品中的应用。研发新型的稳态化策略对其进行保护、增溶、保持活性意义重大。本项目拟探索一种装载量高、并能同时提高活性因子理化稳定性和生物活性的稳态化方法。首先,采用自主设计的蛋白酶水解乳清蛋白,得到结构可控的两亲性多肽,以该多肽作为构筑基元自组装形成纳米管和胶束结构。探索调控多肽结构实现可控自组装的方法。其次,选取两种化合物做为典型食品活性因子模型进行研究。探索乳清蛋白胶束与脂溶性β-胡萝卜素,乳清蛋白纳米管和水溶性花色苷之间的相互作用机制。最后,验证装载活性因子的组装体在食品体系、模拟人体生理条件下的分散性、稳定性和生物活性。通过该研究将掌握乳清蛋白组装体结构和性能的构效关系规律,揭示多肽组装体与活性因子相互作用机制。为其在食品工业中的应用奠定理论基础。以期扩展活性因子在各类食品中的应用范围,并有效提高食品的营养健康功效。
敏感型食品活性因子的稳定性问题不仅降低了它的生物利用率还限制了它在食品中的应用。本项目发现了一种装载量高、并能同时提高活性因子理化稳定性和生物活性的稳态化方法。首先,采用自主设计的蛋白酶水解乳清蛋白,得到结构可控的两亲性多肽,以该多肽作为构筑基元自组装形成纳米球胶束结构。探索调控多肽结构实现可控自组装的方法。其次,选取四种化合物做为典型食品活性因子模型进行研究。探索乳清蛋白胶束与脂溶性功能因子之间的相互作用机制。最后,在Caco-II细胞模型上验证装载活性因子的组装体提高活性因子吸收率和抗氧化效果的能力。同时对其耐光热加工稳定性进行了分析。最后在荷瘤小鼠上进行了抗肿瘤效果验证。主要取得了以下几方面的研究成果:(一)采用酶解羧基化改性策略,创建羧基肽自组装载体,实现了食品活性因子的高效荷载。(二)阐明了食品载体和活性因子之间相互作用规律,实现了食品活性因子的可控释放。(三)在细胞水平解析了载体高效吸收和抗氧化机制,为提高食品活性因子生物利用率和产业化应用奠定理论基础。该项目目前以通讯作者发表SCI/EI文章9篇,影响因子>5的4篇,其中封面文章1篇。包括Nanoscale(IF=7.668), Trends in Food Science and Technology(IF=7.819), Carbohydrate Polymers, Food Chemistryl和Journal of Agricultural and Food Chemistry等。入选“北京市青年拔尖人才”和“北京市科技新星”资助对象。获得中国乳业协会科技卓越青年奖、中国食品科学与技术协会技术进步奖一等奖(排5/10)、第五届中国食品产业产学研创新发展高峰论坛优秀科研成果奖三等奖等科技奖励。研究成果为开发高效吸收的活性因子营养食品提供新思路和新途径。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
不同改良措施对第四纪红壤酶活性的影响
牛乳乳清蛋白过敏原复合酶解控制模式机制研究
α-乳清蛋白酶解制备多肽纳米微管及应用于药物载体的研究
TG酶调控多糖修饰乳清蛋白成膜性能作用机制研究
磁性微球固定化酶分离乳清蛋白源黄嘌呤氧化酶抑制肽及作用机理研究