奇异线性代数方程组的算法与理论研究

基本信息
批准号:19901006
项目类别:青年科学基金项目
资助金额:4.00
负责人:魏益民
学科分类:
依托单位:复旦大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:
关键词:
奇异线性代数方程数值算法收敛理论
结项摘要

We have fulfilled the plan and published 49 papers, 14 of them have been cited in SCI journals, 11 of them have been cited by EI journals. We attended 7 International Conferences and presented the talk. We developed the Krylov subspace methods for solving the singular linear.equations, which was independent of the Isreal professor A. Sidi and was one of the earliest papers in this field and has arised the attension by the foreign researchers. We investigated incomplete semi-iterative method, successive matrix squaring method, index-splitting method and analyzed the initial guess and its convergence. We gave the perturbation.analysis of the singular linear equation with index 1 and parallel Cramer rule for computing the minimum T-norm, S-least squares solution. The perturbation expression for the Tikhonov regularization and weighted pseudoinverse were expressed under the weakest condition. We also studied the perturbation bound of the constrained and weighted linear least.squares problem. For the Drazin inverse, we developed the perturbation theory, solved the hard problem posed by S. Campbell and C. Meyer in 1975 and improved the classical result due to M. Drazin in 1958. In Hilbert space, we gave the perturbation analysis of the least squares problem and the perturbation bound of the Drazin inverse was presented in Banach.space. We also investigated the perturbation, splitting, the representation and approximation theorem of the generalized inverse AT.S (2) ,.which unified the results of the common generalized inverses.

研究具有实际应用背景的奇异线性代数方程组的数值算法及其理论研究.包括:奇异线性代数方程组的通解结构;奇异线性代数方程组的Krylov子空间迭代法和不完全半迭代算法;同时我们将这两类方法运用于经济学中的投入-铲除分析的Leontief闭模型,并建立这类问题的计算解和准确解的误差估计.本课题具有重要的理论意义和广泛的应用前景.

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
2

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

DOI:10.13465/j.cnki.jvs.2020.09.026
发表时间:2020
3

钢筋混凝土带翼缘剪力墙破坏机理研究

钢筋混凝土带翼缘剪力墙破坏机理研究

DOI:10.15986/j.1006-7930.2017.06.014
发表时间:2017
4

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

DOI:10.11999/JEIT210095
发表时间:2021
5

双吸离心泵压力脉动特性数值模拟及试验研究

双吸离心泵压力脉动特性数值模拟及试验研究

DOI:10.13465/j.cnki.jvs.2020.19.016
发表时间:2020

魏益民的其他基金

批准号:11771099
批准年份:2017
资助金额:48.00
项目类别:面上项目
批准号:10471027
批准年份:2004
资助金额:18.00
项目类别:面上项目
批准号:39270447
批准年份:1992
资助金额:5.00
项目类别:面上项目
批准号:11271084
批准年份:2012
资助金额:60.00
项目类别:面上项目
批准号:10871051
批准年份:2008
资助金额:28.00
项目类别:面上项目
批准号:31371774
批准年份:2013
资助金额:76.00
项目类别:面上项目

相似国自然基金

1

大型稀疏线性代数方程组并行迭代算法及其应用

批准号:19471009
批准年份:1994
负责人:刘兴平
学科分类:A0502
资助金额:3.00
项目类别:面上项目
2

大规模稀疏非线性代数方程组的同伦算法

批准号:19871047
批准年份:1998
负责人:白峰杉
学科分类:A0502
资助金额:7.50
项目类别:面上项目
3

电磁计算中大规模线性代数方程组的预条件技术与高效算法

批准号:10771030
批准年份:2007
负责人:黄廷祝
学科分类:A0502
资助金额:18.00
项目类别:面上项目
4

异构多核并行机上线性代数方程组的快速算法研究

批准号:61202098
批准年份:2012
负责人:左宪禹
学科分类:F0204
资助金额:25.00
项目类别:青年科学基金项目