Mixed type partial differential equations not only involve nonlinear analysis, geometry and topology, and other foundation subject, but also closely related to the development of theoretical physics, aerospace, reaction-diffusion, fluid dynamics problems and many other important applied filed. So it is significant to study the mixed type partial differential equations, which can enrich theory of partial differential equations and promote the development on other branch of mathematics and some applied filed. The main purpose of this project is to bring both domestic and overseas well-known experts together with domestic promising young mathematicians by organizing a conference on mixed type partial differential equations, degenerate elliptic equations, nonlinear elliptic equations, and partial differential equations in fluid mechanics and mathematical physics. They can seek possible collaborations on core problem of mixed type partial differential equations by carrying out academic discussions. We believe that such activities can enhance the academic collaborations and prompt domestic research of the partial differential equations to reach the international first-class level, it also help cultivate young talented on the partial differential equations, and help young scholars quickly enter the newest research area of the partial differential equations.
混合型偏微分方程不仅涉及到非线性分析、几何与拓扑等基础学科,同时也同理论物理、航空航天、反应扩散、流体力学等重要应用领域的发展密切相关。因此,开展对混合型偏微分方程和退化型椭圆方程的研讨具有十分重要的意义,这种研讨既能丰富偏微分方程基本理论,又能促进其它数学分支和应用领域的发展。本项目的主要目的是把国内外知名专家和国内年轻学者聚集在一起围绕混合型偏微分方程、退化型椭圆方程、非线性椭圆方程,流体力学中的偏微分方程和数学物理中的偏微分方程组等前沿问题组织系列学术报告,开展学术讨论,寻求新的研究方向和合作领域。这类学术研讨会既能促进学术交流,加强学术合作,促使国内偏微分方程的研究进入国际一流水平,也能培养和造就偏微分方程优秀研究人才,帮助年轻学者尽快的进入偏微分方程最新研究领域。因此,本合作交流项目无论从理论上还是在应用上都是十分必要的。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
资源型地区产业结构调整对水资源利用效率影响的实证分析—来自中国10个资源型省份的经验证据
非线性偏微分方程天元数学交流项目
群作用下的核心数学中若干领域的问题的交叉研究(天元数学交流项目)
相场模型问题的稳定性方法及其相关问题的天元数学交流项目
微分差分系统模型的有关问题——天元数学交流项目