The copolymerization of butadiene and isoprene is in favor of integrating the advantages of the both homopolymers, especially for the copolymers exhibiting different regio/stereoselectivity between butadiene and isoprene, which is a significant subject for the multi-functionalization of polymer materials. However, owing to the similar structure, the catalysts could only show the same regio/stereoselectivity toward butadiene and isoprene, resulting in single regio/stereoregularity in the microstructure. Recently, phosphinoamide rare earth complex was found to be able to catalyze the copolymerization of butadiene and isoprene with different regio/stereoselectivity, while cis1,4-selectivity toward butadiene and 3,4-selectivity toward isoprene. On this basis, herein the structure of the phosphinoamide rare earth catalyst would be changed, namely the phosphinoamide ligand, the rare earth metal and the alkyl species, to make the different regio/stereoselectivity tunable. By the calculation with density functional theory (DFT) and the capture of intermediate in the copolymerization, the coordination figure of phosphinoamide rare earth catalyst and the copolymerization mechanism would be investigated. Moreover, the relationship between the structure of phosphinoamide rare earth catalyst and the differently high regio/stereoselectivity in the copolymerization of butadiene and isoprene would be clarified.
丁二烯和异戊二烯的共聚合有利于实现各自均聚物性能的优势互补,尤其合成聚丁二烯链段和聚异戊二烯链段立体选择性不同的共聚物,对高分子材料的多功能化具有重要意义。然而由于分子结构的相似性,催化剂只能对丁二烯和异戊二烯显示相同的选择性,因而共聚物微观结构存在立体选择性单一的瓶颈。申请人前期的研究发现,膦胺类稀土配合物可用于催化丁二烯/异戊二烯不同立体选择性的共聚合反应,并对两种单体分别显示高顺式和高3,4-选择性。基于上述结果,本项目提出改变膦胺类稀土催化剂的结构,即膦胺类配体、稀土金属和烷基结构,以实现共聚合中丁二烯/异戊二烯不同立体选择性可调控的构想。通过对丁二烯/异戊二烯共聚合过程的密度泛函理论(DFT)计算模拟和过渡态的捕获,探明聚合中膦胺类稀土催化剂的配位方式和共聚合机理;揭示膦胺类稀土催化剂的结构与丁二烯/异戊二烯共聚合中异向高立体选择性之间的关联和规律。
高分子催化剂的创新和发展一直以来都是调控聚合物链微观结构、实现高分子材料功能化、多样化的关键技术问题。异戊二烯和丁二烯是通用橡胶的重要单体,由于二者的结构相似性,因而至今仍未发现采用同一催化剂同时实现对二者的不同结构选择性聚合。在配位聚合中,非茂配体由于其种类丰富、易于调控的特点,因而对聚合催化性能展现了良好的可调控性。本项目采用了同时含有氮、磷原子的“N-P”型非茂配体,合成了一系列的膦胺类稀土配合物,(2,6-iPr2C6H3NPPh2)Sc(CH2C6H4NMe2-o)2(配合物1),(2,6-iPr2C6H3NPPh2)Lu(CH2C6H4NMe2-o)2(配合物2),(2,6-iPr2C6H3NPPh2)Y(CH2C6H4NMe2-o)2(配合物3),(2,4,6-Me3C6H2NPPh2)Y(CH2C6H4NMe2-o)2(配合物4),(4-CF3C6H4NPPh2)Y(CH2C6H4NMe2-o)2(配合物5),(C6H5NPPh2)Y(CH2C6H4NMe2-o)2(配合物6),(4-CH3OC6H4NPPh2)Y(CH2C6H4NMe2-o)2(配合物7),并考察了它们对异戊二烯和丁二烯的聚合性能和聚合规律。研究结果表明,当改变稀土活性中心(Sc, Lu, Y)时,由于金属中心的半径不同,导致了配合物1-3中相应键长键角的变化,影响了它们作为催化剂的聚合性能;当改变“N-P”非茂配体的取代基时,配合物3-7催化异戊二烯和丁二烯的结构选择性也随之发生改变。通过考察配合物1-7对共轭二烯烃的聚合性能,筛选出配合物3为合成异向高立体选择性异戊二烯-丁二烯共聚物的最佳选择,合成了兼具高3,4-结构聚异戊二烯链段和1,4-结构聚丁二烯链段的二元共聚物。DFT计算结果表明,在链引发过程中,顺式-单体的插入在热力学上比反式单体插入具有明显优势;在链增长过程中,丁二烯的1,4-选择性聚合不论在热力学上还是动力学上均比1,2-选择性聚合占据优势,而异戊二烯3,4-选择性聚合主要由动力学过程驱动,这是由于链引发后产生的活性中心与异戊二烯之间具有更小的空间位阻。。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
监管的非对称性、盈余管理模式选择与证监会执法效率?
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
稀土配位催化异戊二烯、丁二烯、苯乙烯选择性三元共聚合制备集成橡胶
高反式丁二烯—异戊二烯共聚橡胶的合成
阳离子型稀土金属有机配合物催化异戊二烯高选择性聚合的计算化学研究
钳型过渡金属配合物催化异戊二烯聚合