Early works on dynamics focused on uniformly hyperbolic dynamical systems(Anosov systems). From the seventies, people realized that uniform hyperbolicity was less universal property than was initially thought: there exist many classes of systems that are non-hyperbolic. So the theory was extended in several distinct directions and then brought out new developments in the ergodic theory of smooth systems and especially, the theory of non-uniformly hyperbolic systems(Pesin theory), characterized by all the Lyapunov exponents being non-null for some invariant measure. Pesin theory and the continuing research give us a richer information about geometric properties of the system. In view of these, we want to study the existence of non-zero Lyapunov exponents of smooth systems and their regularity, especially their continuity. Precisely, we consider the set of partially hyperbolic symplectic diffeomorphisms which are accessible, have 2-dimensional center bundle, C^2-norm uniformly bounded and satisfy some pinching and bunching conditions. We want to study whether the non-uniformly hyperbolic maps are C^1 open. .It has been verified that for linear cocycles over non-invertible maps, there are C^0-open subsets of linear cocycles that are not uniformly hyperbolic and yet have Lyapunov exponents bounded from zero, which is definitely different from the classical theorems for cocycles over invertible maps proved by Mane-Bochi-Viana. In this regard, we are interested in studying the continuity of Lyapunov exponents of linear cocycles over non-invertible maps in L^1 (or L^infinity ) topology and their ergodic properties.
动力系统学科早期主要研究双曲系统(Anosov系统)。上世纪70年代,人们发现保体积双曲系统对拓扑有很强的限制条件,如对三维流形只有环面上存在双曲系统,故而开始研究一致双曲之外的系统。其中最受关注之一是非一致双曲系统:在全测度集合上逐点Lyapunov指数非零的系统。Pesin 理论说明对C^2微分同胚以及测度有非零指数时能建立类似于一致双曲系统的相关性质。鉴于非零指数在遍历论研究的重要性,本项目主要关注光滑系统的非零Lyapunov指数的存在性,以及其正则性(如指数在不同拓扑意义下的连续性等)的研究。具体考察三个问题:对于C^2模一致有界、中心切丛2维,并满足bunching条件的可达的部分双曲辛微分同胚,中心指数非零的同胚是否构成C^1开集;不可逆系统的指数的刻画和可逆的完全不同。我们欲讨论不可逆系统的Lyapunov指数在低拓扑下的连续性,以及对不可逆保体积映射的通有遍历性进行刻画。
目前,我们在光滑系统的非零Lyapunov指数的存在性,正则性以及相关问题的研究中都取得了阶段性的成果。对与Lyapunov指数相关联的指标,如拓扑压、测度压、周期轨道个数的指数增长率、物理测度、类物理测度等的相关多个动力系统与遍历论领域热点问题上,都进行了较为深入细致的研究并得到了较好的结果。.非零Lyapunov指数的存在性与正则性方面,我们主要研究了Lyapunov指数在低拓扑意义下的连续性。较为创新地利用条件熵半连续性和不变原理的等价条件,合理调整光滑性条件,降低拓扑条件,对具有非零 Lyapunov 指数的系统(非一致双曲系统)的开性与指数变化的连续性进行了研究考察。. 在与Lyapunov指数相关联问题的研究方面,我们考察了全测但非紧的复杂分形结构——Pesin集,验证了其上拓扑压、测度压与周期轨道个数的指数增长率之间的关系;考察了中心几乎扩张的部分双曲系统上的物理测度,对每一个中心几乎扩张的微分同胚,讨论了物理测度个数的有限性;研究了具有控制分解的微分同胚,其上类物理测度的半连续性,并进一步的,讨论了三维Lorenz吸引子(不可逆系统)的时间-1映射的统计稳定性;考察了一类部分双曲系统及其不变叶丛性质,主要是传递性,并由此发现,构造了一个双曲系统其稳定叶丛和不稳定叶丛同时极小的重要例子。. 对于流情形,我们考察了紧微分流形上一对Lipschitz等价可微流,研究了周期轨道条数的指数增长率关于映射的保持性等问题。并对带奇流(不可逆系统)的相关问题展开了探讨。
{{i.achievement_title}}
数据更新时间:2023-05-31
Synchronization control of neural networks with state-dependent coefficient matrices
黄河流域水资源利用时空演变特征及驱动要素
低轨卫星通信信道分配策略
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
非光滑哈密顿动力系统的定性分析和相关问题
线性斜积流的Lyapunov指数的连续性研究
随机测地线与 Teichmüller 空间上的 Lyapunov 指数
可微系统的熵、Lyapunov指数及体积增长的关系