Under a Cap and Trade (C&T) mechanism, industrial enterprises must face a number of new risks, such as insufficient allocation of emission quotes, market fluctuation of carbon credit price, and unpredictable cost and benefit of self-purification (SP, i.e making green improvement to reduce emission), in addition to traditional supply/demand risk. How to integrate different strategies or options, optimize production and carbon-resource planning decisions, and mitigate various risks effectively under C&T conditions has been a critical difficult problem facing the Chinese enterprises and of primary interest for academic studies. Current research over-simplified the problem formulation or modeling (e.g. ignoring the important characteristics of self-purification projects and complement the SP with trading decisions on the same time-scale) in order to obtain closed analytic solutions or carry out intended theoretical deductions. This has led to defective and inconsistent and unrealistic solutions. Targeting on these issues, this research proposes to integrate the production, self-purification and emission trading decisions and risk analyses within the constraints characterised by SP projects (e.g. decision and implementation time scale, longer return/payback period, possible conflicts among the projects, uncertain abatement cost and green yield), combining other related risk factors. Designing and constructing simulation models to represent production system flow and related decisions to characterize process dynamics and uncertainties, and evaluate system output/performance (economic and green benefits); developing effective algorithm that combines the power of stochastic and heuristic searches to optimize the related decisions based on the evaluation of simulation; finally developing a knowledge-based risk analysis system interfaced with the simulation model to accomplish the evaluation and selection of risk mitigation strategies. These expected results will contribute significantly to both theoretical exploration and practical application.
在总量控制与交易机制下,企业除面对传统供需风险外,还包括碳配额分配不足、碳市场价格波动、自净减排成本和收益变化等新的风险。如何考虑各种不确定因素影响,整合并优化生产和碳资源配置决策,有效规避多源风险,是当今理论研究热点,也是实践亟待解决的重要难题。现有研究过度简化模型结构、忽略自净项目特征、将自净与碳交易决策在同一规划尺度上简单互补,严重脱离实际,存在较大缺陷。针对现有研究不足,本项目充分考虑自净减排效益延迟、资本投资回收期长、项目间可能互斥、收益成分结构复杂不确定、减排成本不确定间断递增以及其他风险因素,采用计算机仿真构建风险决策过程模型,结合企业资源规划和能源管理体系,将生产、自净和碳交易决策与风险分析有效整合;在此基础上以现代启发式算法为核心与仿真相集成,实现生产和碳资源配置策略的优化,并对不确定条件下最优策略组合的边界条件与分布特征展开研究,提升理论研究水平和实践应用价值.
在总量控制与交易机制下,企业生产需要面对碳配额分配不足、碳市场价格波动、自净减排成本和收益变化等新的风险。如何考虑各种不确定因素影响,整合并优化生产和碳资源配置决策,同时有效地规避多源风险,是当今理论研究与实践改进的重要难题。本研究针对现有研究过度简化系统结构、忽略相关重要特征(如多式联运网络结构特征、自净项目特征、将自净与碳交易决策在同一规划尺度上简单互补)等严重脱离实际的重大缺陷,充分考虑了系统结构特征、自净减排项目资本投资回收期长、项目间可能互斥、收益成分结构复杂不确定、减排成本不确定间断递增及其他相关风险因素,采用计算机仿真构建了多源风险分析与决策过程模型;同时结合企业资源规划和能源管理体系,将生产、自净和碳交易决策与风险分析有效整合;建立开发了单目标与多目标数学规划模型和以启发式算法+MOOP算法为核心的求解方法,实现相关生产和碳资源配置策略的多目标优化,并对不确定条件下最优策略组合的边界条件与分布特征展开了研究,获得了具有一定理论和实践意义的成果。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
硬件木马:关键问题研究进展及新动向
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
碳排放权交易背景下组织效率评价、减排目标设定与减排任务配置研究
碳规制下企业减排策略与生产定价决策研究
碳税与碳交易政策的价格效应及其复合减排机制研究
碳交易、互惠偏好与供应链减排博弈研究