Deformation rate of stamping forming is one of the key factors affecting the high cycle fatigue properties of laser tailor-welded dual-phase (DP) steel joints for automotive applications when stamping forming after welding and the fatigue failure behavior of the welded joints exists a dangerous deformation rate range. The project aims to systematically study the dependence of evolution of the microstructure, residual stress and strain distribution of subregions in the welded joints on the deformation rate during pre-deformation, and clarify the micromechanisms for deformation rate dependency of high cycle fatigue damage behavior of the welded joints through a combination of the experimental test and theoretical analysis. Furthermore, it aims at revealing the nature of the migration of fatigue crack initiation and failure location of the welded joints and establishing the controlling mechanism for dependence of high cycle fatigue damage behavior of the laser welded DP steel joints on the deformation rate when stamping forming after welding. The research results can not only further deepen the understanding of deformation behavior of metallic materials under the transient load at high speeds, but also serve to the innovation of structure design and process technology for DP steel when stamping forming after welding based on the mechanical behavior evaluation in the actual service. It will provide a practical scientific basis for accelerating the development and application of advanced high strength steel for the new generation of automobiles marked by energy saving, emissions reduction and safety.
冲压成型速率是影响车身用“先焊后冲”双相钢激光拼焊板高周疲劳性能及断裂失效部位的关键因素,接头疲劳失效行为存在“危险预变形速率区间”。本项目拟通过实验测试与理论分析相结合的方式,系统研究预变形时接头各区域微观组织结构演化、残余应力分布、微区应变分布演化过程的变形速率相关性,阐明接头高周疲劳损伤行为存在预变形速率依存性的微观机制,揭示接头疲劳裂纹萌生、失效部位发生迁移的本质,建立“先焊后冲”双相钢激光焊接板高周疲劳损伤“成形速率依存关系”的控制机理。该研究结果不仅能进一步深化对金属材料“瞬态高速载荷”变形行为的理论认识,而且可以服务于“以实际服役力学行为评价为基础”的车用先进高强钢激光拼焊板“先焊后冲”结构设计和工艺技术的创新,为加快我国以“节能减排和保障安全”为标志的新一代汽车用先进高强钢的应用发展提供切实的科学依据。
变形速率是影响车身用“先焊后冲”双相钢激光拼焊板、高强金属关键构件高周疲劳性能及断裂失效部位的关键因素,梯度界面的动态疲劳失效行为存在明显的变形速率相关性。本项目通过实验与理论分析相结合的方式,系统研究了梯度强韧化界面各区域微观组织结构演化、残余应力分布、微区应变分布演化过程的变形速率相关性,阐明了高周疲劳损伤行为存在变形速率依存性的微观机制,揭示了梯度强韧化结构疲劳裂纹萌生、失效部位发生迁移的本质,建立高强梯度金属结构材料界面强韧化、动态服役损伤的控制机理。相关研究成果已在国内外重要学术期刊发表(同时多篇已接收)。该研究结果不仅能进一步深化对金属材料“瞬态高速载荷”变形行为的理论认识,而且可以服务于“以实际服役力学行为评价为基础”的先进金属材料梯度强韧化结构设计和工艺技术的创新,为加快我国以“节能减排和保障安全”为标志的新一代高强金属梯度强韧化构件的应用发展提供切实的科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于微观组织和温度效应的双相钢拼焊板成形基础研究
曲线焊缝差厚高强度钢激光拼焊板的成形性能基础研究
磁场处理对高强度钢拼焊板冲压性能的影响机制研究
激光拼焊管内高压成形机理研究