With the development of space exploration, the synergistic effect of multiple factors in space environment and Kapton become a research focus. It is important to study the combined simulation of space micro-debris and atomic oxygen in low earth orbit, and the synergistic effect and mechanism of space materials. Based on the space environment and materials research, the project pays more attention to the coupling interaction of multiple damage mechanisms, and investigates synergistic effect and mechanism of space micro-debris and atomic oxygen exposures on the optical evolution of Kapton films. Based on the analysis on the relationship between material micro-mechanism and macro-performance, the ground simulation technology and accelerated methods of combined space micro-debris and atomic oxygen are clarified according to the tailoring parameters of the space debris and atomic oxygen environments. By taking the typical Kapton films, the interaction of different damage mechanism induced by combined environment factors is studied, and the synergistic mechanism is revealed. The optical properties degradation model is expounded after analyzing the relation between damage characteristics and optical properties. The optical properties evolution model with time is established by measuring the accumulation variation of damage parameters classified and quantified. According to grey systematic theory, the evaluation system of long term behavior of materials influenced by multi factors is constructed, and the life prediction analysis is carried out. The influence on synergistic effects from coating structure of Kapton is discussed to improve adaptability in practice. These studied will offer the science reference to the ground simulation of combined space environment and material performance evaluation.
伴随太空探索,空间环境协同效应和Kapton材料已成为研究热点。开展低地球轨道微小碎片和原子氧协同模拟、材料协同损伤效应与机理研究具有重要意义。本项目拟在空间环境和材料学基础上,以材料损伤多机制交互耦合为中心,考察微小碎片和原子氧暴露对Kapton薄膜光学性能演化的协同效应与机理。在空间环境剪裁的基础上,基于微观机制与宏观性能的联系,阐明微小碎片与原子氧协同环境地面模拟和加速模拟方法。以典型kapton薄膜为研究对象,分析协同作用下各种损伤机制的交互作用,揭示协同作用机理,考察各损伤特征与光学性能的关系,阐明光学性能缺陷退化规律;分类量化损伤特征参数,测定累积损伤下参数变化规律,建立光学性能时间演化模型;结合灰色系统理论构建多因素作用下的材料长期性能评价体系,开展寿命预测分析;探讨材料膜层结构对协同效应的影响。本研究将为空间综合环境地面模拟和材料性能评估提供理论参考。
伴随太空探索,空间环境协同效应和Kapton材料已成为研究热点。开展低地球轨道微小碎片和原子氧协同模拟、材料协同损伤效应与机理研究具有重要意义。本项目阐述了空间微小碎片与原子氧协同环境地面模拟技术和加速模拟方法,明确了累积性能退化因素与可靠性因素综合协同的相关性。阐明了空间微小碎片与原子氧协同环境下Kapton材料损伤特征与光学性能变化规律,研究了协同环境因素交互作用机制,提出了针对内在机制的异步协同的实验方法。同时,探索了人工智能技术在空间综合环境模拟与评价技术中的应用,深化了空间环境地面模拟中的系统评价等理论体系建设。项目验证了微小碎片瞬时效应对原子氧侵蚀长时效应具有加速作用,碎片撞击后,将引起Kapton材料穿孔及附近材料分层现象,促进原子氧扩散。原子氧对Kapton薄膜的损伤效应大于60°临界角表现更强的表面剥蚀效应。通量密度对原子氧效应的影响存在一个临界值,超过临界通量密度的原子氧由于实际参与反应的机率降低而导致侵蚀能力下降。项目将人工智能引入空间环境地面模拟技术,利用数字孪生、神经网络算法通过迭代实现高通量试验。本研究深化空间环境综合模拟的系统协同思想,系统考虑环境因素与评价对象,阐明空间多因素环境综合地面模拟技术和方法,完善累积性能退化和可靠性问题协同作用的加速等效机制。这将为空间综合环境地面模拟和材料性能评估提供理论参考。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
空间微小碎片环境下航天器光学材料性能演化与机理研究
Kapton/Al薄膜在微小空间碎片冲击下的物理化学特性研究
空间微小碎片撞击诱发放电机理研究
低地球轨道(LEO)环境中原子氧与紫外辐射对航天器表面材料协同效应的研究