非范数型多参数正则化方法的反问题理论与计算

基本信息
批准号:11401257
项目类别:青年科学基金项目
资助金额:22.00
负责人:王薇
学科分类:
依托单位:嘉兴学院
批准年份:2014
结题年份:2017
起止时间:2015-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:李启会,董超峰,沈丹桂
关键词:
多参数正则化方法稀疏约束正则化非线性不适定问题贝叶斯推断
结项摘要

In the recent decades,regularization with sparsity constraints has became the hot topic of inverse problems, because by changing the penalty term of regularization functionals, regularization with sparsity constraints allows reconstructed solutions approximating exact ones which are supposed to sparse. In this project, the research would contain theory, algorithm and application of multi-parameter regularization with non-norm l_0 + l_2. We would Focus on the nonlinear inverse problem and investigate the possibility that the multi-parameter regularization makes the solution sparse and guarantee the regularization properties. Our research would contain the following 3 aspects: 1)investigate the multi-parameter regularization with l_0 + l_2 penalty and its convergence property,regularization property and error estimates. 2) By combining Bayesian inference with MCMC methods, we would solve the difficulty in computing the minimizer of functionals caused by non-smooth of l_0 penalty and obtain the posterior distribution and other statistical information. 3)we would apply the result to the seismic full waveform inversion recovering the discontinuous media. We hope our research would throw some new light on the complicated geophysical exploration problems.

近十年来,人们发现稀疏约束正则化通过改变正则化泛函惩罚项,能更好地刻画反演解的稀疏性,因此该方法成为反问题正则化研究的热门课题。本项目将探讨l_0 + l_2非范数型多参数正则化的理论、算法与应用。我们将侧重非线性反问题,探索多参数正则化方法能否使反演结果尽可能稀疏又保持其正则性。我们的研究将包括如下三方面:1)研究以l_0 + l_2为惩罚项的多参数正则化方法,探讨其收敛性、正则性及误差估计;2)把Bayesian推断与MCMC(马尔科夫链蒙特卡罗)方法相结合,来克服由于l_0惩罚项的非光滑性带来的计算泛函极小值点这一困难,获得反演解的后验分布及诸多统计信息;3)将所获得的成果应用于与地质勘探有关的重构不连续介质等复杂参数的全波形反演问题,借此为复杂的地球物理勘探问题提供参考。

项目摘要

稀疏约束正则化通过改变正则化泛函惩罚项,能更好地刻画反演解的稀疏性,因此成为反问题研究的热门课题。本项目基于稀疏约束围绕多惩罚项正则化方法开展了三个方面的研究,1)含非光滑项的多参数正则化方法的算法研究;2)启发式参数选取准则的在迭代正则化方法中的应用;3)基于l_0惩罚项的正则化方法的理论与算法研究。围绕上述内容,进行算法理论与应用研究。获得如下成果:首先,针对非线性算子方程,引入p凸(p>=2) 惩罚项,构建全局收敛算法。这样的罚项可以包含L1、TV等非光滑项,从而对解的稀疏性或不连续性具有较好的刻画。其次,考虑无需噪音水平信息的启发式正则参数选取准则,探讨Gauss-Newton型迭代正则化方法的收敛性与收敛阶,并将该启发式参数选取方法与非光滑惩罚项的FISTA方法,分裂Bregman迭代相结合。最后探讨基于l_0为惩罚项的多参数正则化方法的收敛性、正则性及l_1范数意义下的误差估计,在贝叶斯框架下,应用MCMC方法来获得相应反演解的统计信息。期间将所提方法应用到地震勘探全波形反演问题、CT不完全数据图像重构等实际问题。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
3

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
4

转录组与代谢联合解析红花槭叶片中青素苷变化机制

转录组与代谢联合解析红花槭叶片中青素苷变化机制

DOI:
发表时间:
5

基于多模态信息特征融合的犯罪预测算法研究

基于多模态信息特征融合的犯罪预测算法研究

DOI:
发表时间:2018

王薇的其他基金

批准号:41775025
批准年份:2017
资助金额:68.00
项目类别:面上项目
批准号:81603497
批准年份:2016
资助金额:17.00
项目类别:青年科学基金项目
批准号:39570750
批准年份:1995
资助金额:8.00
项目类别:面上项目
批准号:51603109
批准年份:2016
资助金额:20.00
项目类别:青年科学基金项目
批准号:81670821
批准年份:2016
资助金额:60.00
项目类别:面上项目
批准号:30672284
批准年份:2006
资助金额:29.00
项目类别:面上项目
批准号:81501790
批准年份:2015
资助金额:18.00
项目类别:青年科学基金项目
批准号:41801014
批准年份:2018
资助金额:23.00
项目类别:青年科学基金项目
批准号:81672589
批准年份:2016
资助金额:57.00
项目类别:面上项目
批准号:61103237
批准年份:2011
资助金额:25.00
项目类别:青年科学基金项目
批准号:11271128
批准年份:2012
资助金额:45.00
项目类别:面上项目
批准号:51778001
批准年份:2017
资助金额:61.00
项目类别:面上项目
批准号:81102805
批准年份:2011
资助金额:22.00
项目类别:青年科学基金项目
批准号:31400820
批准年份:2014
资助金额:24.00
项目类别:青年科学基金项目
批准号:30170999
批准年份:2001
资助金额:19.00
项目类别:面上项目
批准号:81072132
批准年份:2010
资助金额:32.00
项目类别:面上项目
批准号:31200396
批准年份:2012
资助金额:21.00
项目类别:青年科学基金项目
批准号:61673035
批准年份:2016
资助金额:62.00
项目类别:面上项目
批准号:81170888
批准年份:2011
资助金额:60.00
项目类别:面上项目
批准号:31000089
批准年份:2010
资助金额:20.00
项目类别:青年科学基金项目
批准号:41405134
批准年份:2014
资助金额:26.00
项目类别:青年科学基金项目
批准号:81660469
批准年份:2016
资助金额:33.00
项目类别:地区科学基金项目
批准号:31670165
批准年份:2016
资助金额:60.00
项目类别:面上项目
批准号:81372781
批准年份:2013
资助金额:70.00
项目类别:面上项目
批准号:39870847
批准年份:1998
资助金额:16.00
项目类别:面上项目
批准号:61203068
批准年份:2012
资助金额:24.00
项目类别:青年科学基金项目
批准号:10573024
批准年份:2005
资助金额:26.00
项目类别:面上项目

相似国自然基金

1

具退化系数的发展型方程多参数反演问题的正则化理论和算法研究

批准号:11261029
批准年份:2012
负责人:杨柳
学科分类:A0505
资助金额:45.00
项目类别:地区科学基金项目
2

逼近和恢复的原子范数正则化方法

批准号:11371007
批准年份:2013
负责人:李落清
学科分类:A0205
资助金额:62.00
项目类别:面上项目
3

不适定问题的正则化计算方法

批准号:10571079
批准年份:2005
负责人:魏婷
学科分类:A0505
资助金额:15.00
项目类别:面上项目
4

启发式正则化参数选取方法在反问题中的理论及应用

批准号:11101093
批准年份:2011
负责人:陆帅
学科分类:A0505
资助金额:22.00
项目类别:青年科学基金项目