This project is mainly concerned with well posedness of some set approximation problems such as mutually nearest points, mutually furthest points, simultaneous approximation and generalized best approximation, and convergence and point estimate problems of Gauss-Newton methods for nonsmooth optimizations and Newton type methods for nonlinear operator.equation in Banach spaces. A series of results on the generic well posedness.of the above-mentioned best approximation problems and the unified convergence determinations and the generalized point estimate theory are established. Consequently, the well posedness theory for approximation and optimization problems and Smale point estimate theory are improved anddeveloped
本项目运用Banach空间理论,非线性分析及集值分析等近代数学理论研究一般Banach空间中非线性逼近和优化的适定性问题。我们在统一的框架下,刻划了非线性逼近和优化的Bair纲适定性的特征及其对算法收敛分析的作用。该课题的研究不仅促进了逼近论和优化理论的发展,而且也为其它相关学科的研究提出了新的领域,因此,具有相当高的学术价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
粗颗粒土的静止土压力系数非线性分析与计算方法
硬件木马:关键问题研究进展及新动向
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
五轴联动机床几何误差一次装卡测量方法
若干逼近问题的适定性研究
非线性逼近与非线性优化理论
几类非线性色散波方程的适定性和散射理论
带非线性约束的逼近与优化问题