This project is mainly concerned with well posedness of some set approximation problems such as mutually nearest points, mutually furthest points, simultaneous approximation and generalized best approximation, and convergence and point estimate problems of Gauss-Newton methods for nonsmooth optimizations and Newton type methods for nonlinear operator.equation in Banach spaces. A series of results on the generic well posedness.of the above-mentioned best approximation problems and the unified convergence determinations and the generalized point estimate theory are established. Consequently, the well posedness theory for approximation and optimization problems and Smale point estimate theory are improved anddeveloped
本项目运用Banach空间理论,非线性分析及集值分析等近代数学理论研究一般Banach空间中非线性逼近和优化的适定性问题。我们在统一的框架下,刻划了非线性逼近和优化的Bair纲适定性的特征及其对算法收敛分析的作用。该课题的研究不仅促进了逼近论和优化理论的发展,而且也为其它相关学科的研究提出了新的领域,因此,具有相当高的学术价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
带有滑动摩擦摆支座的500 kV变压器地震响应
基于旋量理论的数控机床几何误差分离与补偿方法研究
基于腔内级联变频的0.63μm波段多波长激光器
基于主体视角的历史街区地方感差异研究———以北京南锣鼓巷为例
若干逼近问题的适定性研究
非线性逼近与非线性优化理论
几类非线性色散波方程的适定性和散射理论
带非线性约束的逼近与优化问题