This project addresses theories, methods and technologies for high-accuracy multi-axes motion control and active control with varying loads of dynamic flight simulators in the aerospace field. The ultimate objective is to provide hyper-gravity test equipment with safe and high-performance service, despite diverse perturbations and disturbances, such as deformation and vibration of the main rotating arm, nonlinear coupling force caused by the cockpit..We shall investigate application of the two-degree robust control scheme. The goal is to find a proper motion controller, which provides decent performance while maintaining robustness against uncertainties and disturbances. This is considered a bottleneck of current robust control design methods. Furthermore, multi-degree-of-freedom boundary control is another key research area of this project, which is a fairly open issue to the best knowledge of the applicants..Key scientific and technological problems to be solved in this project include: cause of vibration in long rotating arms together with the mechanism of vibration propagation, problem statement of multi-object optimization for sensor- and actuator configuration, controller design method that considers robustness and performance simultaneously, and decoupling design of multi-DOF boundary control..With the above mentioned research activities, it is expected to establish a theoretical connection between the modern robust control theory and the safe operation of multi-axes motion devices. The theory and design methods of multi-axes motion controllers will be developed to provide robustness against model uncertainties and dynamic perturbations. This shall achieve performance of high precision and fast dynamic response capability for flight simulators, and thus higher stability and reliability. The outcomes of this project are expected to provide important theoretical basis and key technical support for the control researches and applications of dynamic flight simulators.
本项目面向航空航天领域对动态飞行模拟器多轴运动控制精度和动态负荷主动控制效果的高要求,力图解决超重环境试验装备在主旋转臂变形、座舱非线性耦合作用、动态负荷环境等时变不确定性影响下,旋臂多轴运动高精度控制和振动抑制的技术难题。针对既有鲁棒控制设计方法的保守性,研究兼顾系统动态性能和鲁棒性的二自由度鲁棒控制设计理论与方法;针对吊舱与旋转臂的相互作用问题,研究多自由度边界控制理论与方法。重点解决多轴运动长转臂系统的振动机理及其耦合传播机制、传感器和执行器配置中优化问题的描述和求解、兼顾鲁棒性和动态性能的控制器设计、多自由度边界控制的解耦设计等关键问题。通过以上研究,发展针对时变不确定性和动态扰动的多轴运动鲁棒控制理论和方法,应用于动态飞行模拟器,可望使系统获得高精度、高动态响应能力等良好动态性能,并具备更高的稳定性和可靠性,为我国动态飞行模拟器的研究和工程运用提供重要理论依据和关键技术支撑。
本项目面向航空航天领域对动态飞行模拟器多轴运动控制精度和动态负荷主动控制效果的高要求,力图解决超重环境试验装备在主旋转臂变形、座舱非线性耦合作用、动态负荷环境等时变不确定性影响下,旋臂多轴运动高精度控制和振动抑制的技术难题。针对既有鲁棒控制设计方法的保守性,研究兼顾系统动态性能和鲁棒性的二自由度鲁棒控制设计理论与方法;针对吊舱与旋转臂的相互作用问题,研究多自由度边界控制理论与方法。重点解决了多轴运动长转臂系统的振动机理及其耦合传播机制、传感器和执行器配置中优化问题的描述和求解、兼顾鲁棒性和动态性能的控制器设计、多自由度边界控制的解耦设计等关键问题。通过以上研究,发展了针对时变不确定性和动态扰动的多轴运动鲁棒控制理论和方法,应用于动态飞行模拟器,可望使系统获得高精度、高动态响应能力等良好动态性能,并具备更高的稳定性和可靠性,为我国动态飞行模拟器的研究和工程运用提供重要理论依据和关键技术支撑。.此外,项目还增加了多机器人协调控制、新型旋翼飞行器控制两个方面的研究,并取得了实质性进展。其中,分别针对具有迟滞输入约束的不确定非线性多智能体系统,在非负有向图、结构平衡的符号有向图和结构不平衡的符号有向图下,提出了相应的分布式协调控制算法,实现了多机器人系统的协调跟踪控制;提出了一种基于飞行器力矩可达集的“稳定悬停”评判准则和基于控制分配策略的容错控制方法,受到蚊子在雨中可以躲避比自己质量高出几十倍的雨滴的碰撞的启发,提出了“顺势而为”的快速安全恢复策略,发明了一种位置控制与姿态控制解耦的过驱动飞行器并通过实验验证了上述策略。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
涡度相关技术及其在陆地生态系统通量研究中的应用
拥堵路网交通流均衡分配模型
内点最大化与冗余点控制的小型无人机遥感图像配准
卫生系统韧性研究概况及其展望
广义时变系统的鲁棒性分析与控制
时变时滞系统的鲁棒最优控制算法及工业应用研究
面向高性能伺服运动系统的鲁棒非线性控制技术
高超声速飞行器快时变鲁棒增益调度控制研究