代数多项式方法在调和分析、PDEs与几何测度论中的应用

基本信息
批准号:12126409
项目类别:数学天元基金项目
资助金额:20.00
负责人:苗长兴
学科分类:
依托单位:北京应用物理与计算数学研究所
批准年份:2021
结题年份:2022
起止时间:2022-01-01 - 2022-12-31
项目状态: 已结题
项目参与者:陈琼蕾,郑继强
关键词:
Kakeya 猜想代数多项式方法BourgainGuth 方法距离集问题限制性猜想
结项摘要

The starting point of polynomial method stems from “Ham Sandwich” thorem in Algebraic topology. Dvir utilized the polynomial method to solve the finite field Kakeya conjecture, and it promoted the development of other subjects in mathematics. Inspired by this work, Guth and Katz solved the Erdös distance conjecture. Bôcher Prize winner Guth combines the polynomial method with multi-scale techniques developed by Bourgain-Guth to promote the research of several conjectures in geometry, analysis and PDEs.And he solved the famous Carleson conjecture, and made substantial progress in Kakeya conjecture, restricted conjecture, distance set conjecture, etc. The idea of the polynomial method is to divide the spatial region Rn into some connected regions and small neighborhoods of n-1 dimensional manifolds through the hypersurface determined by the zero points of the polynomial, so as to realize dimensionality induction and scale induction in physical space.Based on the above reasons, the Tianyuan Advanced Seminar intends to invite a few of mathematicanssuch as Guth, Hickman, Ruixiang Zhang, Hong Wang to give a series of lectures or min-course on polynomial method, and to enable domestic young mathematics workers and doctoral students to master relevant theories and methods as soon as possible. Meanwhile, based on the Tianyuan Advanced Workshop, a platform for cooperation and exchanges for young scholars in this field will be built to promote the development of domestic research fields such as harmonic analysis, PDEs, number theory, and geometric measure theory.

多项式方法出发点是代数拓扑中“三明治定理” 。 Dvir用多项式方法解决了有限域上Kakeya猜想,Guth-Katz解决了沉浸多年的Erdös距离集问题, 在数学的许多领域引发了一场革命.Bôcher奖得主Guth将多项式方法与Bourgain-Guth的多尺度技术相结合,推动了几何、分析与PDEs中的若干猜想的研究,在 Kakeya猜想、限制性猜想、距离集猜想等取得实质进展。多项式方法的理念是通过多项式的零点决定的超曲面将空间区域R^n划分为一些连通区域与n-1维流形的小邻域,从而在相空间中实现维数归纳与尺度归纳。基于上述理由,拟邀请Guth、Hickman及在普林斯顿张瑞祥、王虹等数学家讲解代数多项式方法,使国内年轻数学工作者与博士研究生尽快掌握相关的理论。与此同时,以天元高级讲习班为基础,为从事这一领域青年学者搭建一个合作交流的平台,促进国内调和分析、PDEs、几何测度论的发展。

项目摘要

多项式方法出发点是代数拓扑中“三明治定理”。 Dvir用多项式方法解决了有限域上Kakeya猜想, Guth-Katz解决了沉浸多年的Erdös距离集问题, 在数学的许多领域引发了一场革命。Bôcher奖得主Guth将多项式方法与Bourgain-Guth的多尺度技术相结合,推动了几何、分析与PDEs中的若干猜想的研究,在 Kakeya猜想、限制性猜想、距离集猜想等取得实质进展。多项式方法的理念是通过多项式的零点决定的超曲面将空间区域R^n划分为一些连通区域与n-1维流形的小邻域,从而在相空间中实现维数归纳与尺度归纳。基于国内该研究领域的发展状况,该项目邀请了Sogge、Katz及在加州大学洛杉矶分校王虹等数学家讲解代数多项式方法,使国内年轻数学工作者与博士研究生尽快掌握相关的理论。与此同时,以天元高级讲习班为基础,为从事这一领域青年学者建一个合作交流的平台,促进国内调和分析、PDEs、几何测度论的发展。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
2

气载放射性碘采样测量方法研究进展

气载放射性碘采样测量方法研究进展

DOI:
发表时间:2020
3

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

DOI:10.11999/JEIT210095
发表时间:2021
4

基于全模式全聚焦方法的裂纹超声成像定量检测

基于全模式全聚焦方法的裂纹超声成像定量检测

DOI:10.19650/j.cnki.cjsi.J2007019
发表时间:2021
5

一种改进的多目标正余弦优化算法

一种改进的多目标正余弦优化算法

DOI:
发表时间:2019

苗长兴的其他基金

批准号:11826005
批准年份:2018
资助金额:20.00
项目类别:数学天元基金项目
批准号:11671047
批准年份:2016
资助金额:48.00
项目类别:面上项目
批准号:11726005
批准年份:2017
资助金额:18.00
项目类别:数学天元基金项目
批准号:19601005
批准年份:1996
资助金额:4.50
项目类别:青年科学基金项目
批准号:19971011
批准年份:1999
资助金额:11.00
项目类别:面上项目
批准号:11926303
批准年份:2019
资助金额:20.00
项目类别:数学天元基金项目
批准号:12026407
批准年份:2020
资助金额:20.00
项目类别:数学天元基金项目
批准号:11171033
批准年份:2011
资助金额:46.00
项目类别:面上项目
批准号:10441002
批准年份:2004
资助金额:8.00
项目类别:专项基金项目
批准号:10571016
批准年份:2005
资助金额:26.00
项目类别:面上项目

相似国自然基金

1

实代数几何方法及其在多项式优化中的应用

批准号:11161034
批准年份:2011
负责人:曾广兴
学科分类:A0107
资助金额:40.00
项目类别:地区科学基金项目
2

鞅论及其在巴纳赫空间几何与调和分析中的应用

批准号:10071059
批准年份:2000
负责人:刘培德
学科分类:A0208
资助金额:12.00
项目类别:面上项目
3

基于实代数几何的多项式优化方法研究

批准号:11401074
批准年份:2014
负责人:郭峰
学科分类:A0410
资助金额:22.00
项目类别:青年科学基金项目
4

代数几何方法在离散可积系统中的应用

批准号:11601488
批准年份:2016
负责人:曾昕
学科分类:A0308
资助金额:19.00
项目类别:青年科学基金项目