本项目主要是借助于调和分析方法特别是Strichartz型时空估计(等价于Fourier变换在几何曲面上的限制性估计,通过振荡积分估计来实现)、Littlewood-Paley的分解方法(导致函数空间的刻画、Bony的Paracomposition技术及分数阶求导估计)来研究非线性发展方程Cauchy问题的适定性、经典波动方程及色散波方程(如:Schrodinger方程)的散射性理论. 进而,通
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
带有滑动摩擦摆支座的500 kV变压器地震响应
基于旋量理论的数控机床几何误差分离与补偿方法研究
基于腔内级联变频的0.63μm波段多波长激光器
基于主体视角的历史街区地方感差异研究———以北京南锣鼓巷为例
半线性广义Tricomi方程Cauchy问题解的生命跨度估计研究
半线性广义Tricomi方程Cauchy问题解的生命跨度估计研究
变系数临界半线性波动方程小初值Cauchy问题解的破裂机制及生命跨度估计
具有尖峰解和高次非线性项的非线性色散波方程Cauchy问题的研究