A novel body fitted numerical method with Cartesian coordinates for solving the viscous fluid flow is studied in this project. This method takes advantage of Cartesian coordinates and reserves irregular control volumes near boundaries, so this scheme is full body fitted method. It is different from all other Cartesian grid methods. Two benchmark cases and the external flow field of a 2D simple car body have been simulated. Agreement is found with analytical, numerical benchmark and STAR-CD results. All these show that this method is validated. This Cartesian method has the key advantages that the program can be made easily for general geometries because of the use of collocated grids. This method can also be applied in 3-D and turbulence problems.
本项目探索利用直角坐标系在复杂区域上求解粘性流体流动和换热问题的计算方法。该方法的创新点在于利用直角坐标系但通过在边界附近保留不规则控制体使得算法是完全贴体的,这有别于目前流行的各种直角坐标系的算法。所研究的方法具有以下几个特点:完全贴体编程容易、计算量小、适用于粘性流体的流动和换热、适用于几乎任意复杂区域等。
{{i.achievement_title}}
数据更新时间:2023-05-31
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
瞬态波位移场计算方法在相控阵声场模拟中的实验验证
计及焊层疲劳影响的风电变流器IGBT 模块热分析及改进热网络模型
基于公司行业结构的哈尔滨跨区域联系网络分析
基于生态系统服务流视角的生态补偿区域划分与标准核算--以石羊河流域为例
不稳定沸腾换热过程的反问题解法
非线性问题的区域分解法
复杂组合形体对流换热的研究
高波数波动问题的区域分解法