The stability and transparency of the Lunar Rover in its teleoperation is the key point to guarantee that it can successfully and safely conduct the given tasks of science exploration. From the perspective of system’s passivity, this work concentrates on the control issues of stability and transparency for the teleoperation system. Starting from the interaction mechanism between wheels and terrain, this study will develop a real-time high-accuracy ‘Lunar Rover Prediction Platform’; through constructing the new kinematic model of Lunar Rover with disturbances of longitudinal/lateral slip, the nonpassivity between the Lunar Rover and environment termination caused by the longitudinal/lateral slip can be compensated for by applying the passivity theory; in order to address the nonpassivity induced by the coupling time-varying time-delay and the environment termination, the wave transformation and time-domain passivity control will be mixed together and applied; under the architecture of position-velocity tracking, considering the PD controller used in the traditional teleoperation, the half-self control strategy will be introduced into for compensating for the tracking error caused by the lateral slip; through the shared control strategy, a new trilateral teleoperation system consisting of the master device, the slave Lunar Rover and the prediction platform is developed, which can compensate for the time-delay information of the slave Lunar Rover and decrease the load on the communication channel. The scientific significance of this research lies in revealing the inherent mechanism and the mathematical fundamental of the relationship between the coupling of the wheel’s longitudinal/lateral slip and time-varying delay, and the stability and transparency of the teleoperation system, which can present a theory fundamental and a general scheme for the teleoperation project of the Lunar Rover.
确保月球车在遥操作时的稳定性和透明性,是月球车能够安全地成功执行科研探测任务的关键。围绕稳定性和透明性的控制问题,本项目拟以系统无源性为研究视角;以轮地相互作用机理为切入点,搭建实时高精度的月球车预测平台;构建受车轮纵向/侧向打滑干扰的月球车运动学模型,应用无源性理论,对纵向/侧向打滑引起的月球车/环境端有源性进行补偿;针对变时延与环境端耦合所产生的有源性,采用波变换和时域无源性控制方法对其补偿;采用位置-速度跟踪的控制结构,融合传统遥操作的PD控制律,引入半自主控制策略对侧向打滑带来的跟踪误差进行补偿;通过共享控制策略,构建由操作手柄、预测平台与从端月球车组成的三边遥操作系统,补偿时延引起的迟滞信息,降低通信通道的负载。本项目的研究意义在于揭示车轮纵向/侧向打滑与通信变时延耦合时对遥操作稳定性和透明性影响的内在机制和数学本质,为月球车的遥操作控制策略奠定理论基础及提供普适性方案。
月球车,属于轮式移动机器人大家族的一个重要成员,作为科学探测仪器的载体,在月球探测工程中起着举足轻重的作用;而能否对月球车进行有效的遥操作(即远程控制)则直接关系到相关科学探测任务的成功。.围绕由月表环境带来的月球车遥操作中的稳定性和透明性问题,本项目以系统无源性理论为研究视角;深入解析了轮地相互作用机理,搭建了实时高精度的月球车预测平台;构建了受车轮纵向/侧向打滑干扰的月球车运动学/动力学模型,完善了轮式移动机器人在野外松软地形下的基础理论;应用无源性理论,设计了局部前馈+反馈自主控制算法,对纵向/侧向打滑引起的月球车/环境端有源性进行补偿,并改善了指令跟踪性能;针对时延与环境端耦合所产生的系统有源性,采用波变换和无源性理论等方法对系统稳定性进行设计;采用位置-速度跟踪的控制结构,融合传统遥操作的PD控制律,引入半自主控制策略对纵向/侧向打滑带来的指令跟踪误差进行补偿;通过共享控制策略,构建了由操作手柄、预测平台与从端月球车组成的三边遥操作框架,补偿迟滞信息,降低通信通道的负载。大量实验研究表明:本项目所提出的遥操作理论及方法较好地解决了月球车在松软崎岖地形下的遥操作技术难点,并提升了系统遥操作性能(稳定性、力透明性、指令跟踪性、任务成功率等)。.本项目的主要贡献在于突破了传统的车轮纯滚动和非完整约束等理想假设的限制,揭示了车轮纵向/侧向打滑与通信时延耦合时对遥操作稳定性和透明性影响的内在机制和数学本质,完善了轮式移动机器人在野外环境下的遥操作理论,为月球车的遥操作控制策略奠定理论基础及提供可行性方案。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
面向云工作流安全的任务调度方法
变可信度近似模型及其在复杂装备优化设计中的应用研究进展
热塑性复合材料机器人铺放系统设计及工艺优化研究
柔性基、柔性铰空间机器人基于状态观测的改进模糊免疫混合控制及抑振研究
机器人宇航员安全控制策略及变时延力反馈遥操作研究
计及时变时延的多边遥操作系统分析与控制基础研究
时延多边遥操作系统受限优化与协同控制研究
监控式空间机器人大时延遥操作技术研究