As the exploration and operation tasks in the industry become more and more complicated and delicate in recent years, multilateral teleoperation system is treated as an important technical scheme to deal with those applications where human beings are not allowed to access, such as space and ocean explorations, nuclear industry, and tele-surgery. And the development of the advanced control approach is the critical issue for the multilateral teleoperation systems. This project is based on the previous control research on bilateral teleoperaion systems, and mainly considers the practical issues in multilateral teleoperation systems such as the complicated multilateral communication under time delay, the motion tracking between the master and slave manipulators, the estimation and reappearance of the environmental force, the coordinated operation of multiple robots, and the physical constraints of robots. Subsequently, the high performance-oriented control technologies for the multilateral teleoperation systems are integrated and developed in the following. Firstly, a novel communication architecture is proposed where the non-power signals are transmitted in the communication channel, and it can avoid the trade-off problem of the stability and transparency in the traditional teleoperation control under time delay. Moreover, an integrated design method of the master and slave controllers is given so as to largely improve the transparency performance of the multilateral teleoperaion systems, which includes the accurate position tracking in the slave side, the estimation and effective reappearance of the environmental force in the master side, and the position/force hybrid control of multiple slave robots. Considering the physical constraints of the slave manipulators and taking into account the real-time received the master trajectory commands, a computationally efficient on-line trajectory planning is proposed so that the planned slave trajectories can satisfy those physical constraints and also converge to the master trajectory commands as soon as possible. In the end, those reliable control technologies for the multilateral teleoperation systems are quite meaningful for the applications of the practical exploration and operation tasks.
随着探索和作业任务往复杂、精细和协同的趋势发展,在很多人难以到达的现场,比如太空、深海、核工业、远程医疗等,多边的遥操作系统逐渐成为重要的实现工具,而控制技术的研发是多边遥操作系统的核心课题。本项目在传统双边遥操作控制技术的基础上,着重考虑多边遥操作带来的复杂时延通信、主从位置跟踪、环境作业力再现、多机器人协同作业、机器人物理约束等实际问题,系统性地开发高性能多边遥操作控制技术。提出非功率信号传输的新型通信结构,克服传统时延遥操作控制中稳定性和透明性不可兼得的难题;发展主从控制器的综合设计理论,实现从端精确位置跟踪和位置/力混合控制,以及主端环境力的有效再现,以最大限度得获得系统的透明性;根据实时接收到的主端轨迹命令,提出在线的轨迹受限优化方法,使其既能满足从机器人的物理约束,又可以以最快速度逼近主端的轨迹命令。最终,为多边遥操作系统高性能的完成探索和作业任务提供坚实的控制技术保障。
本项目在传统双边遥操作控制技术的基础上,着重考虑遥操作带来的复杂时延通信、主从位置跟踪、环境作业力再现、多机器人协同作业、机器人物理约束等实际问题,系统性地开发高性能多边遥操作控制方法,以求在关键技术上有所突破和创新。为此,本项目开展了如下的研究工作:1)针对现有基于无源控制理论的遥操作框架存在信号畸变、进而恶化系统透明性的问题,提出了基于时延补偿的四通道遥操作控制方法,设计观测器实现通信信道中的能量耗散,保证系统的稳定性;2)改进波变换结构,引入局部力反馈的时延补偿控制器,以补偿信号畸变,在无法破除无源遥操作控制结构稳定性和透明性相互制约的前提下,尽可能地提高系统的透明性;3)针对上述方法无法破除无源遥操作控制结构稳定性和透明性相互制约的问题,探索了非功率信号的传输方式,提出了通用型电动机械臂的精密运动控制方法,并设计位置/力混合控制算法,实现了从端多机器人的协同作业;4)针对主-从机械臂的异构匹配,考虑非对称主-从机械臂结构的空间映射问题,提出了混合工作空间映射算法与平滑切换律,将关节空间映射和工作空间映射相结合,保证了操作者控制命令的精确性;5)针对主-从机械臂的轨迹规划,考虑实际遥操作系统中的物理约束问题,利用边界估计和非线性滤波器进行规划,提出了临界曲线算法,并对遥操作系统中无法预先获得主端运动轨迹的数学表达问题,设计实时的内部插值算法,实现从端参考轨迹的在线插值与规划。本项目在遥操作通信机制、电动机械臂精密运动控制、多机器人协同控制、主从异构映射和轨迹受限优化等方面取得了较好的进展,为多边遥操作系统高性能地完成作业任务提供坚实的控制技术保障,进而为遥操作机器人领域的发展做出有效探索和借鉴。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于细粒度词表示的命名实体识别研究
计及时变时延的多边遥操作系统分析与控制基础研究
复杂环境及通讯时延下飞行机器人双边遥操作系统设计方法研究
机器人宇航员安全控制策略及变时延力反馈遥操作研究
监控式空间机器人大时延遥操作技术研究