Flexible energy storage devices have significant advantages, such as portable, lightweight, flexible, wearable or implantable, which made them very promising devices in variety of applications. For the development of flexible energy storage devices, the research on flexible, low-cost and high-performance electrode materials is very important. This project focuses on the design and synthesis of low-cost biomass- and polymer-derived functionalized flexible porous carbon materials for energy storage. The materials will be obtained by using cheap biomass as flexible substrates, the organic monomers or ligands, etc. penetrate or load to the surface or pores of the flexible substrates. Then the microporous organic polymers or metal organic framework materials will formed on biomass-based flexible substrates through crosslinking of the organic monomers, or the coordination of organic ligands with metal salts. Afterward, through a simple carbonization process, functionalized flexible porous carbon materials will be obtained. The porous structure of the flexible carbon materials can be tuned by changing the sizes and types of organic monomers or ligands. The functional groups of the porous carbon materials can be achieved by using different heteroatoms (such as nitrogen, sulfur, etc.) containing organic monomers, or by using different metal salts as precursors. Furthermore, the modulation of carbonization temperature and time also plays an important role on the porous structure of the flexible porous carbon materials. The flexibility of the obtained materials will be studied. More importantly, the application performances of these materials as electrodes in electrochemical energy storage devices (supercapacitors, lithium-ion batteries and fuel cells) will be systematically investigated. The implementation of this project will not only contribute to the cross-integration of different research fields, but also provide a green and sustainable strategy towards the development of low-cost and high-performance functionalized flexible electrode materials.
柔性储能器件具有携带方便、重量轻、可弯曲、可穿戴、可植入等优点,具有重大的应用前景。目前柔性储能器件发展的关键是廉价、高性能的柔性电极材料研发。本项目拟以廉价生物质基柔性材料为基底,将有机单体或配体等负载到柔性基底孔道或表面,然后经过有机单体间交联、聚合,或有机配体与金属配位等反应实现微孔有机聚合物或金属有机骨架材料在生物质柔性基底上的构筑,并通过进一步炭化得到新型、廉价的功能柔性多孔炭材料。通过有机单体、配体的尺寸及反应类型的选取实现材料孔道结构的调控;通过含不同杂原子或金属的构筑单元选取,实现杂原子或金属掺杂;通过炭化条件的调变,实现具有不同孔道结构和金属形态的柔性多孔材料制备;考察材料柔性程度,并测试这类功能柔性多孔炭材料在电化学储能(超级电容器、锂离子电池和燃料电池)中的性能。本项目的实施可以促进不同研究领域的交叉融合,为廉价、高性能柔性电极材料发展提供新的途径。
随着化石燃料带来的能源和环境问题日益严峻,全球的科技工作者在积极地研发绿色环保的能源存储器件。目前储能器件发展的关键是开发廉价、高性能的电极材料。本项目以廉价的生物质基材料为基底,将有机单体或配体等负载到生物质基底上,经过有机单体间交联、聚合,或有机配体与金属配位等过程实现微孔有机聚合物或金属有机骨架材料在生物质基底上的构筑,并通过进一步碳化得到一些新型、廉价的功能多孔碳材料。通过有机单体、配体的尺寸及反应类型的选取,实现材料孔道结构的调控;通过含不同杂原子或金属的构筑单元选取,实现杂原子或金属掺杂;通过碳化条件的调变,实现具有不同孔道结构和金属形态的多孔碳材料制备;考察材料的物理化学性质,并测试了这类功能多孔碳材料在气体吸附及电化学储能中的应用性能。. 依照设计方案,经探索制备了一系列基于生物质和聚合物的功能多孔碳材料。其中,将咔唑类聚合物与柔性棉布结合,制备了柔性氮掺杂的高比表面积多孔碳材料。该材料对二氧化碳和甲烷都具有较优异的吸附性能(21.0 wt% 和3.5 wt%, 273 K, 1.0 bar),且对二氧化碳和氮气的吸附选择性为24.4。将SnO2引入碳材料基底制备了超细SnO2/氮磷共掺杂的多孔碳复合材料,作为钠离子电池的负极材料,显示出优异的倍率性能、循环稳定性和高的初始库仑效率。此外,以壳聚糖和植酸为前体,制备的低成本的金属磷化物合金/氮磷共掺杂多孔碳材料,在酸性和碱性溶液中均发挥出优异的电催化水分解性能。. 本项目的顺利实施为制备廉价、高性能的电极材料提供了有效的方法,同时促进了不同研究领域的交叉融合,具有重要的学术价值和意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
高压工况对天然气滤芯性能影响的实验研究
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
多孔铸型炭/导电聚合物复合材料制备及电化学储能研究
纤维基柔性多孔储能材料的可控构筑及其电化学电容性能研究
柔性多孔硒碳电极的设计合成及电化学储能性能研究
基于全生物质基柔性电化学储能器件的研究