截断Toeplitz算子及其生成C*-代数

基本信息
批准号:11671065
项目类别:面上项目
资助金额:48.00
负责人:卢玉峰
学科分类:
依托单位:大连理工大学
批准年份:2016
结题年份:2020
起止时间:2017-01-01 - 2020-12-31
项目状态: 已结题
项目参与者:刘浏,胡寅寅,李然,丁倩,盛浩,邓佳,李宇飞,汤旭
关键词:
C*代数Hankel算子Hardy空间算子算子代数Toeplitz
结项摘要

Truncated Toeplitz operators play an important role in operator theory and function theory,etc.Since Sarason has published his seminal paper,truncated Toeplitz operators have constituted an active area of research in operator theory.In this project,by using Banach algebra localization method,reproducing kernels and Berezin transformations,and the relationship between truncated Toeplitz operators and truncated Hankel operators and a class of singular integral operators,we will investigated:1.For two truncated Toeplitz operators, What analysis、algebraic and geometric properties of their symbols can guarantee that their commutators or semicommutators are compact; 2.For finite number truncated Toeplitz operators, What analysis、algebraic and geometric properties of their symbols can guarantee that a product of these truncated Toeplitz operators is itself a truncated Toeplitz operator or a product of these truncated Toeplitz operators is a compact(finite rank) perturbation of a truncated Toeplitz operator;3.Fredholm properties and indices of truncated Toeplitz operators with piecewise continuous function symbols and the structure of C*-algebra generated by truncated Toeplitz operators with piecewise continuous function symbols.

截断Toeplitz 算子因为在算子理论、函数理论等领域的重要作用由Sarason首先系统研究并迅速成为近几年函数空间算子理论中研究的热点。本项目主要利用Banach代数局部化理论、模型空间的再生核和Berezin变换理论、截断Toeplitz 算子与截断Hankel算子和奇异积分算子等之间的联系研究如下问题:1.对于两个截断Toeplitz 算子研究算子符号满足什么分析、几何和代数性质可以保证它们的换位子和半换位子是紧或有限秩;2. 对有限个截断Toeplitz 算子研究它们的符号满足什么分析、几何和代数性质能够保证这些截断Toeplitz 算子的乘积还是截断Toeplitz 算子以及这些截断Toeplitz 算子的乘积是截断Toeplitz 算子的紧扰动或有限秩扰动。 3. 研究以逐段连续函数为符号的截断Toeplitz 算子Fredholm性质、指标及其生成的C*-代数的结构。

项目摘要

不变子空间问题是泛函分析中著名的公开问题。不变子空间问题与双圆盘上压缩移位算子的不变子空间格是否饱和问题是等价的。本项目从截断Toeplitz 算子代数性质出发,在双圆盘Hardy空间上,研究了模型空间上一类截断Toeplitz算子(压缩移位算子)的换位子代数中的投影元,进而研究约化子空间。通过利用特征函数、双圆盘Hardy 空间函数理论和算子代数技巧等,给出了这类算子有等距约化子空间的充分必要条件是内函数有一个只依赖与一个变量的内因子,有Alger约化子空间的充分必要条件是内函数是两个单变量内因子的乘积。在双圆盘Hardy空间上,对由一些有理函数生成的模型空间,给出了压缩移位可约或不可约的刻画。在单位圆盘的Hardy空间上刻画了以有两个零点的Blaschke积为符号的截断Toeplitz 算子换位代数,进而刻画了其可约性,并且证明如果可约,则限制在约化子空间上酉等价与压缩移位;对以Blaschke积为符号的截断Toeplitz 算子的可约性给出了一些充分条件,等等。上述成果对研究双圆盘Hardy空间和模型空间结构,研究截断Toeplitz 算子的代数性质、算子结构、可约性和不变子空间等是极大的推动,对解决不变子空间问题有重要的理论意义和科学价值。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

涡度相关技术及其在陆地生态系统通量研究中的应用

涡度相关技术及其在陆地生态系统通量研究中的应用

DOI:10.17521/cjpe.2019.0351
发表时间:2020
2

Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example

Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example

DOI:10.1016/j.eiar.2021.106623
发表时间:2021
3

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

DOI:10.11821/dlyj020190689
发表时间:2020
4

One-step prepared prussian blue/porous carbon composite derives highly efficient Fe-N-C catalyst for oxygen reduction

One-step prepared prussian blue/porous carbon composite derives highly efficient Fe-N-C catalyst for oxygen reduction

DOI:10.1016/j.ijhydene.2020.03.250
发表时间:2020
5

多空间交互协同过滤推荐

多空间交互协同过滤推荐

DOI:10.11896/jsjkx.201100031
发表时间:2021

卢玉峰的其他基金

批准号:10671028
批准年份:2006
资助金额:21.00
项目类别:面上项目
批准号:11826007
批准年份:2018
资助金额:60.00
项目类别:数学天元基金项目
批准号:11726007
批准年份:2017
资助金额:60.00
项目类别:数学天元基金项目
批准号:11326004
批准年份:2013
资助金额:60.00
项目类别:数学天元基金项目
批准号:10971020
批准年份:2009
资助金额:25.00
项目类别:面上项目
批准号:12126311
批准年份:2021
资助金额:20.00
项目类别:数学天元基金项目
批准号:11526005
批准年份:2015
资助金额:75.00
项目类别:数学天元基金项目
批准号:11926304
批准年份:2019
资助金额:20.00
项目类别:数学天元基金项目
批准号:11026033
批准年份:2010
资助金额:30.00
项目类别:数学天元基金项目
批准号:11271059
批准年份:2012
资助金额:68.00
项目类别:面上项目
批准号:11626004
批准年份:2016
资助金额:70.00
项目类别:数学天元基金项目
批准号:11426014
批准年份:2014
资助金额:60.00
项目类别:数学天元基金项目

相似国自然基金

1

函数空间上复合算子与Toeplitz算子生成的C*-代数

批准号:11001107
批准年份:2010
负责人:李颂孝
学科分类:A0207
资助金额:18.00
项目类别:青年科学基金项目
2

模空间上的截断Toeplitz 算子和截断Hankel算子

批准号:11801572
批准年份:2018
负责人:马攀
学科分类:A0207
资助金额:26.00
项目类别:青年科学基金项目
3

推广的Bergman空间上Toeplitz算子及生成的C*-代数的研究

批准号:11271059
批准年份:2012
负责人:卢玉峰
学科分类:A0207
资助金额:68.00
项目类别:面上项目
4

乘法算子,Hankel算子,Toeplitz算子及Toeplitz代数

批准号:11271387
批准年份:2012
负责人:郑德超
学科分类:A0207
资助金额:60.00
项目类别:面上项目