Plug-in hybrid electric vehicle(PHEV) is a kind of strategic new products which can reduce urban haze and energy consumption of transportation. As multiple power sources of parallel hybrid electromechanical coupling system can efficiently coupled under multiple working modes, it becomes one of the main configurations of PHEV. However, for the parallel hybrid electric system, driving condition and system operation process are puzzled decoupling, high efficient control is difficult fulfilled and global energy optimization has not achieved, the main reasons are listed as follows: 1)The method for vehicle operating conditions and global energy optimal decoupling has not been systematically established, there are still huge gaps between global optimization method and its realization; 2)PHEV needs to high frequency dynamic switch among multiple working modes to efficiently deal with the complicated working conditions, and the dynamics smooth control problems of system transient switching remains to be solved; 3) In view of the multiple actuators and multiple controllers of the parallel hybrid system, the game mechanism among the system efficiency, power performance and driving performance needs to be revealed for collaborative execution among different subsystems. Therefore we present a study of the nonlinear dynamical coupling mechanism and modeling methods of the coaxial parallel hybrid system based on AMT; establish the indicators for driving conditions and uncertainty; study the collaborative mechanisms of multiple working modes and the dynamics transient smooth switching control problems among multiple modes; Then the two-tiered game theory based coordinated control method is adopted to solve the multi-objective constrained PHEV control problem. Finally, this kind of control method is validated by test vehicles, which can provide theoretical support for designing of efficient plug-in hybrid system.
插电式混合动力汽车(PHEV)是降低城市雾霾及交通能耗的战略性新产品。并联混合动力机电耦合系统具备多工作模式下多动力源高效耦合特征,因而成为PHEV的主流构型方案之一。但并联混动系统工况与系统运行不解耦,高效运行调控难,全局能量优化仍未实现,其主因有:1)运行工况与全局能量最优间解耦方法未建立,全局优化与可实现性间仍有差距;2)PHEV需多模式高频切换以应对工况需求,而系统瞬态切换动力学平滑控制问题仍未解决;3)并联混动系统多执行器、控制器协同过程的经济性、动力性、驾驶性间的博弈机制亟需揭示。因此拟研究基于AMT的同轴并联混动系统非线性动力学耦合机理与建模方法;建立工况与不确定性量化机制;研究PHEV多模式协同机制与瞬态切换中动力学平滑控制问题;进而用分层博弈方法解决能耗与驾驶性多目标约束下PHEV全局优化难题;为插电式混合动力系统创新设计与高效控制提供理论支撑。
插电式混合动力汽车(PHEV)是节能减排的重要技术产品。并联混合动力机电耦合系统具备多工作模式多动力源高效耦合特征,因而成为PHEV的主流构型方案之一。但并联混动系统外部工况与系统运行状态具有强耦合关系,高效运行调控难,全局能量优化仍未能实现。其主要原因有:PHEV需在多模式间高频切换以应对工况需求,而系统瞬态切换动力学平滑控制问题仍未解决;此外,并联混动系统多执行器、控制器协同过程的经济性、动力性、驾驶性间的博弈机制亟需揭示。.在本基金的支持下,项目团队开展了如下研究:1)研究了基于AMT的同轴并联混动系统非线性动力学耦合机理与建模方法,对机电系统建立了包含离合器、变速箱、发动机、驱动电机等在内的非线性动力学耦合模型,并经试验验证了其置信度。探索了PHEV多模式协同机制与瞬态切换中动力学平滑控制问题;实现了全工况下的多模式平滑切换解耦控制。2)采集了大量典型城市公交车运行数据,使用大数据云计算架构建立了离线在线融合的全局优化控制机制,并在PHEB样机上进行试验,试验效果与预期一致。建立了工况与不确定性量化机制;进而用分层博弈方法解决能耗与驾驶性多目标约束下PHEV全局优化难题;为插电式混合动力系统创新设计与高效控制提供了理论支撑。研究内容覆盖了申请书的全部任务,并取得了一系列成果。团队在领域内高水平期刊发表SCI论文17篇,EI论文3篇,申请发明专利4项,获得授权3项。在项目实施过程中培养了博士研究生3人,硕士研究生4人,其中获清华大学优秀硕士毕业生2人,清华大学研究生特等奖学金2人,优秀博士生毕业生1人,博士后创新人才支持计划1人。在基金项目的支撑下所取得的相关成果是负责人获得国家科技进步二等奖(2019,排名1)的重要支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
内点最大化与冗余点控制的小型无人机遥感图像配准
基于二维材料的自旋-轨道矩研究进展
机电无级自动变速插电式混合动力系统综合控制研究
基于模型预测的插电式混合动力汽车能量管理多目标协调优化控制方法研究
随机混杂预测控制的插电式混合动力系统能量管理策略优化机理
无摩擦离合器转矩耦合型插电式混合动力系统的关键基础问题研究