Kadomtsev-Petviashvili (KP) hierarchy is one of the hot topics in the field of mathematical physics, which has an important zero-constraint system. Under the zero-constraint conditions of the pseudo-differential operator, KP hierarchy can be returned to KdV hierarchy and also back to Boussinesq hierarchy. In this project, using the Lax operator L and the zero-constraint conditions of KP hierarchy, and the properties of Nambu 3-bracket, we will try to construct a new completely integrable KP constrained system based on the Lax triple. Furthermore, we will derive the generalized KdV hierarchy and the generalized Boussinesq hierarchy. We will also analyze their integrability and symmetries, and study their exact solutions. Finally, we will try to find the applications of the equations in mathematical physics.
Kadomtsev-Petviashvili(KP)方程族是数学物理领域研究的热点之一,它有重要的零约束系统。在拟微分算子的零约束条件下,KP方程族可退回到KdV方程族,也可退回到Boussinesq方程族。在本项目中,我们将借助KP方程族的Lax算子L以及算子L的零约束条件,结合Nambu 3-括号的性质,构造基于Lax 3-对的完全可积的新的KP约束系统,推出广义KdV方程族和广义Boussinesq方程族,并分析这些方程的可积性和对称性,求出它们的精确解,进而研究这些方程在数学物理中的应用。
本项目主要围绕广义KP约束系统的构造及其可积性、精确解进行研究。基于算子Nambu 3-括号,在KP方程族算子的零约束下,构造了广义Lax方程,并推出了广义KdV方程族和广义Boussinesq方程族。借助于3-李代数和经典的泊松括号,构造了一个特殊的3括号,推出了非色散KP方程族的3-Lax方程,并给出了相应的证明。基于算子Nambu 3-括号和修正KP方程族的Lax对,得到了修正KP方程族的广义Lax方程,推出了广义的修正KP方程族。本项目还推出了BKP方程族的规范变换,构建了约束的BKP方程族,得到了约束BKP方程族由波函数产生的一种新的规范变换。本项目也求出了所推部分方程的精确解,并试图分析这些方程在数学物理中的可能应用。另外,借助黎曼-希尔伯特方法,本项目研究了具有零边界条件的聚焦KE方程的长时间渐近行为和高阶色散非线性薛定谔方程的孤子解。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
KP系列的对称约束与矩阵积分
对称约束下的KP型方程簇的可积性
基于lax代数的多值拓扑理论
基于多约束条件和广义系统理论的复杂设备故障诊断方法