Carrier-based unmanned combat air vehicle (UCAV) is a new naval weapon developed rapidly in recent years. However, the severe flutter problem induced by flying wing aerodynamic layout of carrier-based UCAV has become a bottleneck problem of developing such aircrafts. This research intends to investigate the flutter semi-active control theory and methods using piezoelectric materials. The aim of this work is to explore a novel flutter suppression method with low power consumption to eliminate the contradiction between energy consumption of the control system and long endurance flight requirement. The content of this research includes three parts as follows. Firstly, to realize the pre-alarming of flutter onset, the online monitoring and detection methods will be fully investigated with the aid of system identification techniques and signal processing tools. Secondly, in order to break through the current circuit-based semi-active damping control framework, a new framework based on models and control algorithms is presented, and the corresponding control system design methods are also given. Thirdly, using energy harvesting techniques, the regenerative design is also introduced into semi-active control field. The strong vibration energy caused by the engine is harvested to generate electricity for control system low power assumption. The project aims to provide a novel flutter suppression solution characterized by low power assumption to meet the special demands of carrier-based UCAV in harsh maritime environment.
舰载无人攻击机是近年来迅猛发展的新型海战武器,飞翼气动布局引发的颤振问题是研制该类飞机亟待突破的瓶颈问题。本项目拟开展基于压电材料的颤振半主动控制理论与方法研究,其目的是探索一种低功耗的颤振抑制手段,以便解决控制系统能量消耗与无人攻击机长航时作业需求之间的矛盾。其主要研究内容包括:为实现颤振早期预警,借助系统辨识技术和信号处理手段,研究基于结构响应信号的颤振在线监测与识别方法;突破现有以阻尼电路为主的半主动控制框架,提出以模型和控制算法为基础的全新框架,给出可行的控制系统设计方法;同时,结合压电能量采集技术,研究馈能式设计,将发动机振动能转化为控制所需的电能。项目研究将为颤振抑制提供新的解决途径,以满足恶劣飞行环境下舰载无人攻击机对颤振抑制的特殊需求。
颤振现象是制约飞翼布局无人机的瓶颈性问题。本项目系统开展了基于压电材料的颤振半主动控制理论与方法研究,其目的是探索一种低功耗的颤振抑制手段,解决控制系统能量消耗与无人攻击机长航时作业需求之间的矛盾。为实现颤振早期预警,我们借助系统辨识技术和信号 处理实现了数据驱动的气动弹性建模和颤振预测;为增强同步开关类半主动控制的性能,提出了全新的基于算法的开关控制框架和硬件电路实现,既保持了开关控制的低功耗,又赋予了开关控制更大的灵活性;另一方面,针对气动弹性系统的时变特点,研究了线性变参数的主动控制策略,给出了作动器饱和情况下的控制算法。最后,研究了非线性压电俘能技术,设计了激发高能量态的自激电路。项目成果研究为颤振抑制提供了新的解决途径,可以满足无人机对颤振抑制的特殊需求。同时,项目研究成果在装备振动控制中有广泛的应用前景,可应用于船舶、直升机、火箭等载运工具的振动控制。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
多源数据驱动CNN-GRU模型的公交客流量分类预测
基于主动翼板的桥梁颤振控制律及控制算法研究
基于压电纤维复合材料的航天柔性结构半主动振动控制研究
基于滑模变结构控制的机翼颤振主动抑制方法研究
基于压电智能驱动器的扭振主动控制技术研究