Flutter instability is one of main concerns restricting the development of super-long span bridges. In this project, theory, methodology and technical feasibility to improve the flutter stability of super-long span bridges with box girder are investigated using active flap. First, intensive studies will be performed by CFD simulation and wind tunnel testing to seek reasonable aerodynamic configuration of fluid-solid coupled system, which includes characteristic dimension and location of active flap on a box deck section. The possible influence factors including amplitude, phase, reduced frequency so on is then analyzed. An unsteady nonlinear aerodynamic force model and parameter identification method will be proposed considering the contribution of active flap. A control law of the nonlinear aeroelastic system including deck and active flap will be established. A closed-loop control algorithm of the deck-active flap nonlinear aeroelastic system will be proposed based on the modern control theory, robustness of the system is then investigated. Section model wind tunnel testing will be carried out to verify the control algorithm and robustness of system. Finally, the methodology will be extended to the three-dimensional case and be applied to a super-long span suspension bridge. Numerical simulation will be performed to examine the efficiency of active flap to suppress flutter instability of the bridge. The purpose of this project is to conduct principle and preemptive research on flutter active control for super-long span bridges using active flap, solve key scientific issues, and establish preliminary methodology, and constitute the theoretical foundation for flutter active control of super-long span bridges in near future.
颤振稳定性是制约超大跨度桥梁发展的关键因素之一。本项目研究通过主动控制气动翼板的技术途径,提高超大跨度桥梁颤振稳定性的理论、方法与技术可行性。首先利用CFD数值模拟和风洞试验,寻求箱型主梁-主动翼板流固耦合系统的合理气动布局--主动翼板设置位置、特征尺寸;在非定常气动力影响因素研究的基础上,建立流固耦合系统非定常气动力非线性数学模型及参数识别方法,进而建立包含主动翼板的桥梁非线性气动弹性系统的控制律;基于现代控制理论建立桥梁非线性气动弹性系统主动控制的控制算法,研究系统的鲁棒性,并通过节段模型风洞试验进行验证;最后,将方法拓展到三维,建立基于主动翼板的超大跨度桥梁颤振主动控制分析方法,并对拟定的超大跨度悬索桥算例实现颤振主动控制的数值仿真。本项目的目的是对基于主动翼板的桥梁颤振主动控制开展原理性及先导性研究并初步形成理论体系,为今后超大跨度桥梁颤振主动控制奠定理论基础。
基于经典机翼-副翼气动力模型,建立了主动翼板-流线型箱梁的气动力模型,并基于Roger有理函数近似实现了气动力的时域化,可用于主动控制计算中。通过理论分析表明,主动翼板运动相位需要和主梁运动方向相反才能获得有效的颤振控制。当主动翼板设置为次优控制律时,控制效果及鲁棒性比最优控制律更佳,响应时间显著缩短,并能确保颤振的主动控制。.CFD数值计算表明,当前翼板扭转运动方向与主梁的扭转方向相反,后翼板扭转运动方向与主梁扭转方向相同时,颤振控制效果良好。在此情况下,随着翼板相对于主梁的扭转速度增加,主梁的最大扭转角度有减小的趋势。 较没有安装气动翼板的情况,颤振临界风速提高到1.6倍以上。同时,气动翼板的长度过小或过大,颤振主动控制效果不好。当气动翼板长度为主梁宽度的10-15%时,颤振主动控制效果较好。.基于可编程控制系统,研发了主动翼板在流线型箱梁颤振控制上的风洞试验系统。试验结果表明,在主动控制面振幅在扭转振幅权重为0.9竖向权重0.1的情况下运动时,在试验中未出现发散现象。翼板与主梁运动间的相位差是影响主动翼板控制效率的重要因素,当翼板运动相位差领先主梁扭转运动相位差约70°时,振动控制效果最佳,此时颤振临界风速可提升至1.7倍以上。.风洞试验表明,在主动翼板抑振颤振时,主梁竖弯和扭弯运动之间的相位差将出现变化。在颤振临界状态下,两者之间相位将逐渐过渡到翼板未工作的初始相位(扭转落后于竖向运动)附近一个稳定的相位上。在颤振振幅逐渐增大的情况下,主动翼板工作将使得竖向振动逐渐落后于扭转运动。.
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
钢筋混凝土带翼缘剪力墙破坏机理研究
台风过程下大跨度悬索桥颤振自适应翼板气动控制理论研究
大跨桥梁风致颤振的吸气绕流控制
基于滑模变结构控制的机翼颤振主动抑制方法研究
自适应主动控制面桥梁风振控制理论与方法