Wireless communication environment of mountains and tunnels brings new challenges to the data transmission of multi-locomotive synchronization control system for heavy haul railways. The reliability of the transmission is seriously affected by the coverage blind area, weak field, complex interference. According to this problem, this project plans to research the reliability key technologies of wireless broadband communication in mountains and tunnels. 1800 MHz propagation characteristics and mathematical model will be studied in order to provide theoretical foundation for the key technologies of communication reliability. The weak field coverage optimization method for TD-LTE wireless networks in mountain and tunnel areas will be also studied. The tunnel group of wireless network coverage optimization scheme will be presented. Then the causes and solutions of wireless communication reliability in mountains and tunnels will be mainly discussed. The intelligent handover decision algorithm between double networks will be put forwarded. For the internal and external interference of tunnels, the interference suppression model based on collaborative optimization theory will be built to ensure the real-time and the reliability of synchronous control information wireless transmission between the locomotives. Through the theoretical analysis and the simulation investigation, it is expected to obtain the breakthroughs in the key techniques of network coverage and optimization in tunnel group, reliable handover, and interference suppression in mountain and tunnel areas. This project will provide the support of technology and methods for the communication reliability in mountains and tunnels for heavy haul railways.
山区及隧道地区无线通信环境给重载运输机车重联无线同步控制系统的数据传输带来新的挑战,容易存在覆盖盲区或弱场以及复杂的干扰严重影响了通信传输的可靠性。针对此问题,本课题拟展开山区及隧道无线宽带通信可靠性关键技术基础研究。研究山区及隧道地区1800MHz无线电波传播特性及数学模型,为通信可靠性关键技术的研究提供理论基础;研究山区及隧道地区TD-LTE无线网络弱场覆盖优化方法,提出隧道群无线网络覆盖优化方案;重点研究山区及隧道地区无线通信可靠性影响因素及解决方法,提出双层网络间智能切换决策算法,针对隧道内外干扰建立基于协同优化理论的干扰抑制模型,保障机车同步控制信息无线传输的可靠性和实时性。本课题通过理论分析及仿真,研究山区及隧道无线通信可靠性关键技术,预计在隧道群覆盖优化、可靠越区切换、隧道内外干扰抑制等关键技术方面取得突破,为实现铁路重载运输线路山区与隧道地区的通信可靠性提供技术和方法支撑。
山区及隧道地区无线通信环境给重载运输机车重联无线同步控制系统的数据传输带来新的挑战,覆盖盲区或弱场以及复杂的干扰严重影响了通信传输的可靠性。针对此问题,本课题开展了一系列山区及隧道无线宽带通信可靠性关键技术的基础研究。研究山区及隧道地区1800MHz 无线电波传播特性及数学模型,为通信可靠性关键技术的研究提供理论基础;研究山区及隧道地区 TD-LTE 无线网络弱场覆盖优化方法,采用分布式天线技术,提高铁路沿线的通信可靠性,并运用光载无线通信技术有效提高铁路无线通信系统的可靠性和服务质量;研究铁路山区及隧道地区切换方案优化算法及相关流程,针对LTE-R无线网络系统,提出了两种MIMO切换方案,针对高速铁路系统,提出了双天线移动中继站切换方案和基于网络物理系统的最优化切换方案;关注铁路山区及隧道无线网络安全问题,提出了LTE无线网络安全网关架构、技术要求与测试方法,提出了基于布隆滤波器的安全消息转发。本课题通过理论分析及仿真,研究山区及隧道无线通信可靠性关键技术,在隧道群覆盖优化、可靠越区切换、网络安全、隧道内外干扰抑制等关键技术方面取得突破,为实现铁路重载运输线路山区与隧道地区的通信可靠性提供技术和方法支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
多源数据驱动CNN-GRU模型的公交客流量分类预测
高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射
宽带高速无线通信传输理论及关键技术
重载铁路隧道底部结构服役性能演化机制与设计方法研究
微波超宽带(UWB)混沌无线通信关键技术研究
面向高速铁路安全的宽带移动通信网络理论与关键技术研究